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pa = (Ea +
p2a
4Ea

, 0, 0, Ea − p2a
4Ea

)

pb = (Eb,+Eb sin θb, 0,+Eb cos θb)

pc = (Ec,−Ec sin θc, 0,+Ec cos θc)

� the kinematics and notation for the branching of parton a into b+ c. We assume that

p2b , p
2
c ≪ p2a ≡ t

� a is an outgoing parton, which is called timelike branching since t > 0.

� The opening angle is θ = θb + θc. Defining the energy fraction as

z = Eb/Ea = 1− Ec/Ea ,

we have for small angles, t = 2EbEc(1− cos θ) = z(1− z)E2
aθ

2

� using transverse momentum conservation, (Ebθb = Ecθc),

θ =
1

Ea

√
t

z(1− z)
=

θb

1− z
=

θc

z
.
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� The fermions involved in high energy processes can often be taken to be massless.

� We choose an explicit representation for the gamma matrices. The Bjorken and Drell

representation is,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi
0

)
, γ5 =

(
0 1

1 0

)
,

The Weyl representation is more suitable at high energy

γ0 =

(
0 1

1 0

)
, γi =

(
0 −σi

σi
0

)
, γ5 =

(
1 0

0 −1

)
,

In the Weyl representation upper and lower components have different helicities.

� Both representations satisfy the same commutation relations (West coast metric!)

γµγν + γνγµ = 2gµν , γ5 = iγ0γ1γ2γ3

� in the Weyl representation γ0γi =

(
σi

0

0 −σi

)
. σ are the Pauli matrices.
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� In the Weyl representation

pµγ
µ =

√
p+p−




0 0
√

p+

p−
e−iϕ

0 0 e+iϕ
√

p−

p+√
p−

p+
−e−iϕ 0 0

−e+iϕ
√

p+

p−
0 0




e±iϕp ≡ p1 ± ip2√
(p1)2 + (p2)2

=
p1 ± ip2√

p+p−
, p± = p0 ± p3.

� The massless spinors solns of Dirac eqn, 6pu+(p) = 6pu−(p) = 0 are

u+(p) =




√
p+√

p−eiϕp

0
0


 , u−(p) =




0
0√

p−e−iϕp

−
√

p+


 ,

� In this representation the Dirac conjugate spinors are

u+(p) ≡ u†
+(p)γ0 =

[
0, 0,

√
p+,

√
p−e−iϕp

]
, u−(p) =

[√
p−eiϕp ,−

√
p+, 0, 0

]

Normalization u†
±u± = 2p0
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� Consider the case where

pa = (Ea +
p2a
4Ea

, 0, 0, Ea − p2a
4Ea

)

pb ∼ (Eb,+Ebθb, 0,+Eb)

pc ∼ (Ec,−Ecθc, 0,+Ec)

� Thus for example, (θb = (1− z)θ, θc = zθ)

u†
+(p) =

√
2Eb

[
1,

θb

2
, 0, 0

]
, u+(pc) ≡ v−(pc) =

√
2Ec




1

− θc
2
0
0




Hence for polarization vectors εin = (0, 1, 0, 0), εout = (0, 0, 1, 0)

gūb
+ γ0γ1 vc− = g

√
4EbEc

(
1,

θb

2

)(
0 1
1 0

)(
1

− θc
2

)
= −g

√
EbEc(θb − θc)
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−gūb
+γµε

in µ
a vc− = g

√
EbEc(θb − θc) = g

√
z(1− z)(1− 2z)Eaθ ≈ g(1− 2z)

√
t,

−gūb
+γµε

out µ
a vc− = ig

√
EbEc(θb + θc) = ig

√
z(1− z)Eaθ ≈ ig

√
t.

� The squared branching probabilities both vanish in the forward direction

� the matrix element relation for the branching is

|Mn+1|2 ∼ g2

t
TRF (z; εa, λb, λc)|Mn|2

where the colour factor is now Tr(tAtA)/8 = TR = 1/2. The non-vanishing functions

F (z; εa, λb, λc) for quark and antiquark helicities λb and λc are

εa λb λc F (z; εa, λb, λc)
in ± ∓ (1− 2z)2

out ± ∓ 1

Summing over the polarizations we get

2
[
(1− 2z)2 + 1

]
= 4(z2 + (1− z)2).

This is the branching probability for gluon into a quark, Pqg = TR(z2 + (1− z)2)
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dσn+1 = dσn
dt

t
dz

dφ

2π

αS

2π
CF,

∫
dφ

2π
CF = P̂ba(z)

where P̂ba(z) is the appropriate splitting function, (C=colour factor,F=polarization dependent

splitting function)

dσn+1 = dσn
dt

t
dz

αS

2π
P̂ba(z) .

� Including all the color factors we find the results for the unregulated branching probabilities.

P̂qq(z) = CF

[
1 + z2

(1− z)

]
,

P̂qg(z) = TR

[
z2 + (1− z)2

]
, TR =

1

2
,

P̂gq(z) = CF

[
1 + (1− z)2

z

]
,

P̂gg(z) = CA

[
z

(1− z)
+

1− z

z
+ z (1− z)

]
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� Consider enhancement of higher-order contributions due to multiple small-angle parton emission,

for example in deep inelastic scattering ( DIS)

� Incoming quark from target hadron, initially with low virtual mass-squared −t0 and carrying a

fraction x0 of hadron’s momentum, moves to more virtual masses and lower momentum fractions

by successive small-angle emissions, and is finally struck by photon of virtual mass-squared

q2 = −Q2.

� Cross section will depend on Q2 and on momentum fraction distribution of partons seen by virtual

photon at this scale, D(x,Q2).
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� To derive evolution equation for Q2-dependence of D(x,Q2), first introduce pictorial

representation of evolution, also useful later for Monte Carlo simulation.

� Represent sequence of branchings by path in (t, x)-space. Each branching is a step downwards

in x, at a value of t equal to (minus) the virtual mass-squared after the branching.

� At t = t0, paths have distribution of starting points D(x0, t0) characteristic of target hadron at

that scale. Then distribution D(x, t) of partons at scale t is just the x-distribution of paths at that

scale.
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� Consider change in the parton distribution D(x, t) when t is increased to t+ δt. This is number

of paths arriving in element (δt, δx) minus number leaving that element, divided by δx.

� Number arriving is branching probability times parton density integrated over all higher momenta

x′ = x/z,

δDin(x, t) =
δt

t

∫ 1

x
dx′ dz

αS

2π
P̂ (z)D(x′, t) δ(x− zx′)

=
δt

t

∫ 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

� For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

∫ x

0
dx′ dz

αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

∫ 1

0
dz

αS

2π
P̂ (z)
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� Change in population of element is

δD(x, t) = δDin − δDout

=
δt

t

∫ 1

0
dz

αS

2π
P̂ (z)

[
1

z
D(x/z, t)−D(x, t)

]
.

� Introduce plus-prescription with definition

∫ 1

0
dx f(x) g(x)+ =

∫ 1

0
dx [f(x)− f(1)] g(x) .

� Using this we can define regularized splitting function

P (z) = P̂ (z)+

� Plus-prescription, like the Dirac-delta function, is only defined under integral sign.

� Plus-prescription includes some of the effects of virtual diagrams.



DGLAP

Parton branching -

kinematics

Massless Dirac equation

Branching probabilities

DGLAP equation

Evolution of Parton

distributions

Sudakov form factor

Hadron-hadron processes

Factorization of the cross

section

Lepton-pair production

NLO QCD: Parton level

integrators

Subtraction method in detail

Subtraction method in detail

(cont)

Matrix element counter-event

for W production

Subtraction method for NLO

Why NLO?

Slicing methods

Reduction of virtual

amplitudes

NLO results

Recap

Bibliography

12 / 45

We obtain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

∫ 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

� Here D(x, t) represents parton momentum fraction distribution inside incoming hadron probed at

scale t.
� In timelike branching, it represents instead hadron momentum fraction distribution produced by an

outgoing parton. Boundary conditions and direction of evolution are different, but evolution

equation remains the same.

� For several different types of partons, must take into account different processes by which parton

of type i can enter or leave the element (δt, δx). This leads to coupled DGLAP evolution

equations of form

t
∂

∂t
Di(x, t) =

∑

j

∫ 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) .

� Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave via q → qg.

Thus plus-prescription applies only to q → qg part, giving

Pqg(z) = P̂qg(z) = TR [z2 + (1− z)2], Pqq(z) = P̂qq(z)+ = CF

(
1 + z2

1− z

)

+
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� Scale dependent parton distributions determined from experiment.

� Their behaviour with Q2 (large x:shrinkage, small x:growth), determined by DGLAP eqn.

� N2LO terms (and partial N3LO terms) in DGLAP equation now known.
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� DGLAP equations convenient for evolution of parton distributions. To study structure of final

states, slightly different form is useful. Consider again simplified treatment with only one type of

branching. Introduce Sudakov form factor:

∆(t) ≡ exp

[
−
∫ t

t0

dt′

t′

∫
dz

αS

2π
P̂ (z)

]
,

� the DGLAP equation derived previously can be written as,

tD(x, t)

dt
=

∫ 1

0
dz

αS

2π
P̂ (z)

[
1

z
D(x/z, t)−D(x, t)

]
.

� This can be written in terms of the Sudakov form factor as

t
∂

∂t
D(x, t) =

∫
dz

z

αS

2π
P̂ (z)D(x/z, t) +

D(x, t)

∆(t)
t
∂

∂t
∆(t) ,

t
∂

∂t

(
D

∆

)
=

1

∆

∫
dz

z

αS

2π
P̂ (z)D(x/z, t) .
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D(x, t) = ∆(t)D(x, t0) +

∫ t

t0

dt′

t′
∆(t)

∆(t′)

αS

2π

∫
dz

z
P (z)D(x/z, t′) .

� the first term on the right-hand side is the contribution from paths that do not branch between

scales t0 and t.
� Thus the Sudakov form factor ∆(t) is simply the probability of evolving from t0 to t without

branching.

� The second term is the contribution from all paths which have their last branching at scale t′.

� The basic problem that the Monte Carlo branching

algorithm has to solve is as follows: given the virtual

mass scale and momentum fraction (t1, x1) after some

step of the evolution, or as initial conditions, generate the

values (t2, x2) after the next step.

� t2 and x2 can be generated with the right distributions

with two random numbers by solving the following

relations,
∆(t2)

∆(t1)
= R

∫ x2/x1

ǫ
dz

αS

2π
P (z) = R′

∫ 1−ǫ

ǫ
dz

αS

2π
P (z)
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� In hard hadron-hadron scattering, constituent partons from each incoming hadron interact at short

distance (large momentum transfer Q2).
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� For hadron momenta P1, P2 (S = 2P1 · P2), form of cross section is

σ(S) =
∑

i,j

∫
dx1dx2Di(x1, µ

2)Dj(x2, µ
2)σ̂ij(ŝ = x1x2S,αS(µ

2), Q2/µ2)

where µ2 is factorization scale and σ̂ij is subprocess cross section for parton types i, j.

� Notice that factorization scale is in principle arbitrary: affects only what we call part of

subprocess or part of initial-state evolution (parton shower).

� Unlike e+e− or ep, we may have interaction between spectator partons, leading to soft

underlying event and/or multiple hard scattering.



Factorization of the cross section

Parton branching -

kinematics

Massless Dirac equation

Branching probabilities

DGLAP equation

Evolution of Parton

distributions

Sudakov form factor

Hadron-hadron processes

Factorization of the cross

section

Lepton-pair production

NLO QCD: Parton level

integrators

Subtraction method in detail

Subtraction method in detail

(cont)

Matrix element counter-event

for W production

Subtraction method for NLO

Why NLO?

Slicing methods

Reduction of virtual

amplitudes

NLO results

Recap

Bibliography

17 / 45

� Why does the factorization property hold and when it should fail?

� For a heuristic argument, consider the vector boson production, the simplest hard process

involving two hadrons

H1(P1) +H2(P2) → V +X.

� Do the partons in hadron H1, through the influence of their colour fields, change the distribution

of partons in hadron H2 before the vector boson is produced? Soft gluons which are emitted long

before the collision are potentially troublesome.

� A simple model from classical electrodynamics. The vector potential due to an electromagnetic

current density J is given by

Aµ(t, ~x) =

∫
dt′d~x′ Jµ(t′, ~x′)

|~x− ~x′|
δ(t′ + |~x− ~x′| − t) ,

where the delta function provides the retarded behaviour required by causality.
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� Consider a particle with charge e travelling in the positive z direction with constant velocity β. The

non-zero components of the current density are

Jt(t′, ~x′) = eδ(~x′ − ~r(t′)) ,

Jz(t′, ~x′) = eβδ(~x′ − ~r(t′)), ~r(t′) = βt′ẑ,

ẑ is a unit vector in the z direction. At an observation point (the supposed position of hadron H2)

described by coordinates x, y and z, the vector potential (either performing the integrations using

the current density given above, or by Lorentz transformation of the scalar potential in the rest

frame of the particle) is

At(t, ~x) =
eγ√

[x2 + y2 + γ2(βt− z)2]

Ax(t, ~x) = 0

Ay(t, ~x) = 0

Az(t, ~x) =
eγβ√

[x2 + y2 + γ2(βt− z)2]
,

where γ2 = 1/(1− β2). Target hadron H2 is at rest near the origin, so that γ ≈ s/m2.



Parton branching -

kinematics

Massless Dirac equation

Branching probabilities

DGLAP equation

Evolution of Parton

distributions

Sudakov form factor

Hadron-hadron processes

Factorization of the cross

section

Lepton-pair production

NLO QCD: Parton level

integrators

Subtraction method in detail

Subtraction method in detail

(cont)

Matrix element counter-event

for W production

Subtraction method for NLO

Why NLO?

Slicing methods

Reduction of virtual

amplitudes

NLO results

Recap

Bibliography

19 / 45

� Note that for large γ and fixed non-zero (βt− z) some components of the potential tend to a

constant independent of γ, suggesting that there will be non-zero fields which are not in

coincidence with the arrival of the particle, even at high energy.

� However at large γ the potential is a pure gauge piece, Aµ = ∂µχ where χ is a scalar function

� Covariant formulation using the vector potential A has large fields which have no effect.

� For example, the electric field along the z direction is

Ez(t, ~x) = F tz ≡ ∂Az

∂t
+

∂At

∂z
=

eγ(βt− z)

[x2 + y2 + γ2(βt− z)2]
3
2

.

The leading terms in γ cancel and the field strengths are of order 1/γ2 and hence of order

m4/s2. The model suggests the force experienced by a charge in the hadron H2, at any fixed

time before the arrival of the quark, decreases as m4/s2.

¡
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� Mechanism for Lepton pair

production, W -production, Z-

production, Vector-boson pairs,

. . .

� Collectively known as the Drell-

Yan process.

� Colour average 1/N .

dσ̂

dQ2
=

σ0

N
Q2

q δ(ŝ−Q2), σ0 =
4πα2

3Q2
, cf e+e− annihilation.

� In the CM frame of the two hadrons, the momenta of the incoming partons are

p1 =

√
s

2
(x1, 0, 0, x1), p2 =

√
s

2
(x2, 0, 0,−x2) .
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The square of the qq̄ collision energy ŝ is related to the overall hadron-hadron collision energy by

ŝ = (p1 + p2)2 = x1x2s. The parton-model cross section for this process is:

dσ

dM2
=

∫ 1

0
dx1dx2

∑

q

{fq(x1)fq̄(x2) + (q ↔ q̄)} dσ̂

dM2
(qq̄ → l+l−)

=
σ0

Ns

∫ 1

0

dx1

x1

dx2

x2
δ(1− z)



∑

q

Q2
q {fq(x1)fq̄(x2) + (q ↔ q̄)}


 .

� For later convenience we have introduced the variable z = Q2

ŝ
= Q2

x1x2s
.

� The sum here is over quarks only and the q̄q contributions are indicated explicitly.
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� The contribution of the real diagrams (in four dimensions) is

|M |2 ∼ g2CF

[
u

t
+

t

u
+

2Q2s

ut

]
= g2CF

[(1 + z2

1− z

)(−s

t
+

−s

u

)
− 2

]

where z = Q2/s, s+ t+ u = Q2.

� Note that the real diagrams contain collinear singularities, u → 0, t → 0 and soft singularities,

z → 1.

� The coefficient of the divergence is the unregulated branching probability P̂qq(z).
� Ignore for simplicity the diagrams with incoming gluons.
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� Control the divergences by continuing the dimensionality of space-time, d = 4− 2ǫ, (technically

this is dimensional reduction).

PS =
cΓ

8π

(
1

Q2

)ǫ

zǫ(1− z)1−2ǫ

∫ 1

0
dy (y(1− y))−ǫ

where

s =
Q2

z
, t = −Q2

z
(1− z)(1− y) u = −Q2

z
(1− z)y, y =

1

2
(1 + cos θ).

� Performing the phase space integration, the total contribution of the real diagrams is

σR =
αS

2π
CF

(
µ2

Q2

)ǫ

cΓ

[( 2

ǫ2
+

3

ǫ
− π2

3

)
δ(1− z)− 2

ǫ
Pqq(z)

− 2(1− z) + 4(1 + z2)
[ ln(1− z)

1− z

]

+
− 2

1 + z2

(1− z)
ln z

]

with cΓ = (4π)ǫ/Γ(1− ǫ).
� The contribution of the virtual diagrams is (neglecting terms of order ǫ)

σV = δ(1− z)

[
1 +

αS

2π
CF

(
µ2

Q2

)ǫ

c′Γ
(
− 2

ǫ2
− 3

ǫ
− 6 + π2

)]
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� Adding it up we get in dim-reduction

σR+V =
αS

2π
CF

(
µ2

Q2

)ǫ

cΓ

[(2π2

3
− 6
)
δ(1− z)− 2

ǫ
Pqq(z)− 2(1− z)

+ 4(1 + z2)
[ ln(1− z)

1− z

]

+
− 2

1 + z2

(1− z)
ln z

]

� The divergences, proportional to the branching probability , are universal.

� We will factorize them into the parton distributions. We perform the mass factorization by

subtracting the counterterm, (The finite terms are necessary to get us to the MS-scheme).

2
αS

2π
CF

[
−cΓ

ǫ
Pqq(z)− (1− z) + δ(1− z)

]

σ̂ =
αS

2π
CF

[(2π2

3
− 8
)
δ(1− z) + 4(1 + z2)

[ ln(1− z)

1− z

]

+
− 2

1 + z2

(1− z)
ln z

+ 2Pqq(z) ln
Q2

µ2

]

� Similar correction for incoming gluons.
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� Agreement with NLO theory is good.

� LO curves lie about 25% too low.

� NNLO results are also known and lead to a

further modest (4%) increase at the

Tevatron.

� NLO corrections for Z and W production

at
√
s = 13 TeV remain a 22% effect.

� NNLO corrections are small at the LHC
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� We would like to go beyond the results for the total cross section to get results for distributions.

� We have two separate divergent integrals which must be combined before numerical integration

σNLO =

∫

m+1
dσR +

∫

m
dσV

� Note that the jet definition can be arbitratrily complicated.

dσR = PSm+1|Mm+1|2FJ
m+1(p1, . . . pm+1)

We need to combine the two pieces, which reside in phase-spaces of different dimensionality,

without knowledge of FJ .

� Divergences regularized in d = 4− 2ǫ dimensions.

� Two solutions: phase space slicing and subtraction.

� Illustrate with a simple one-dimensional example.

|Mm+1|2 ≡ 1

x
M(x), |Mm|2 ≡ 1

ǫ
ν + k

x is the energy of an emitted gluon.
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� Divergences regularized in d = 4− 2ǫ dimensions. Two solutions: phase space slicing and

subtraction.

� Thus the full cross section in d dimensions is

σ =

∫ 1

0

dx

x1+ǫ
M(x)FJ

1 (x) + (
1

ǫ
ν + k)FJ

0

� Infrared safety: FJ
1 (0) = FJ

0 , KLN cancellation theorem, M(0) = ν
� Exact identity

σ =

∫ 1

0

dx

x1+ǫ

[
M(x)FJ

1 (x)−M(0)FJ
1 (0)

]
+

∫ 1

0

dx

x1+ǫ
νFJ

0 + (
1

ǫ
ν + k)FJ

0

=

∫ 1

0

dx

x

[
M(x)FJ

1 (x)−M(0)FJ
1 (0)

]
+ kFJ

0

� In practice we have to introduce a cutoff to protect from numerical overflow.

σ =

∫ 1

δ

dx

x

[
M(x)FJ

1 (x)−M(0)FJ
1 (0)

]
+ kFJ

0
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Thus the full cross section in d dimensions is

σ =

∫ 1

0

dx

x1+ǫ
M(x)FJ

1 (x) + (
1

ǫ
ν + k)FJ

0

=

∫ 1

δ

dx

x1+ǫ
M(x)FJ

1 (x) +

∫ δ

0

dx

x1+ǫ
M(x)FJ

1 (x) + (
1

ǫ
ν + k)FJ

0

≈
∫ 1

δ

dx

x
M(x)FJ

1 (x) +M(0)FJ
1 (0)

∫ δ

0

dx

x1+ǫ
+ (

1

ǫ
ν + k)FJ

0

=

∫ 1

δ

dx

x
M(x)FJ

1 (x) + ln(δ)νFJ
0 + kFJ

0

� δ must be chosen small enough that the power corrections of order δ can be neglected.

� Important to establish that the final result is independent of the slicing parameter δ.

� large numerical cancellations at δ → 0.
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� Direct integration is good for the total cross section, but for differential distributions, (to which we

want to apply cuts), we need a Monte Carlo method.

� We use a general subtraction procedure at NLO.

� at NLO the cross section for two initial partons a and b and for m outgoing partons, is given by

σab = σLO
ab + σNLO

ab

where

σLO
ab =

∫

m
dσB

ab

σNLO
ab =

∫

m+1
dσR

ab +

∫

m
dσV

ab

the singular parts of the QCD matrix elements for real emission, corresponding to soft and

collinear emission can be isolated in a process independent manner
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� One can use this the construct a set of counterterms

dσct =
∑

ct

∫

m
dσB ⊗

∫

1
dVct

where dσB denotes the appropriate colour and spin projection of the Born-level cross section,

and the counter-terms are independent of the details of the process under consideration.

� these counterterm cancel all non-integrable singularities in dσR, so that one can write

σNLO
ab =

∫

m+1
[dσR

ab − dσct
ab] +

∫

m+1
dσct

ab +

∫

m
dσV

ab

The phase space integration in the first term can be performed numerically in four dimensions.
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In the soft limit p5 → 0 we have

|M1(p1, p2, p3, p4, p5)|2 = g2CF
p1 · p2

p1 · p5 p2 · p5
|M0(p1, p2, p3, p4)|2

� Eikonal factor can be associated with radiation from a given leg by partial fractioning

p1 · p2
p1 · p5 p2 · p5

= [
p1 · p2

p1 · p5 + p2 · p5
][

1

p1 · p5
+

1

p2 · p5
]

� including the collinear contributions, singular as p1 · p5 → 0, the matrix element for the counter

event has the structure

|M1(p1, p2, p3, p4, p5)|2 =
g2

xap1 · p5
P̂qq(xa)|M0(xap1, p2, p̃3, p̃4)|2

where 1− xa = (p1 · p5 + p2 · p5)/p1 · p2 and P̂qq(xa) = CF (1 + x2)/(1− x)
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� For event q(p1) + q̄(p2) → W+(ν(p3) + e+(p4)) + g(p5) with p1 + p2 =
∑5

i=3 pi

� generate a counter event q(xap1) + q̄(p2) → W+(ν(p̃3) + e+(p̃4)) and

xap1 + p2 =
∑4

i=3 p̃i with 1− xa = (p1 · p5 + p2 · p5)/p1 · p2.

� A Lorentz transformation is performed on all j final state momenta p̃j = Λµ
νp

ν
j , j = 3, 4 such

that p̃µj → pµj for p5 collinear or soft.

� The longitudinal momentum of p5 is absorbed by rescaling with x.

� The other components of the momentum, p5 are absorbed by the Lorentz transformation.

� In terms of these variables the phase space has a convolution structure,

dφ(3)(p1, p2; p3, p4, p5) =

∫ 1

0
dx dφ(2)(p2, xp1; p̃3, p̃4)[dp5(p1, p2, x)]

where

[dp5(p1, p2, xa)] =
ddp5

(2π)3
δ+(p25)Θ(x)Θ(1− x)δ(x− xa)
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� If ki is the emitted parton, and pa, pb are the incoming momenta, define the shifted momenta

k̃µj = kµj − 2kj · (K + K̃)

(K + K̃)2
(K + K̃)µ +

2kj ·K
K2

K̃µ ,

where the momenta Kµ and K̃µ are,

Kµ = pµa + pµb − pµi , K̃µ = p̃µai + pµb .

� Since 2
∑

j kj ·K = 2K2 and 2
∑

j kj · (K + K̃) = 2K2 + 2K · K̃ = (K + K̃)2 the

momentum conservation constraint in the m+ 1-parton matrix

pµa + pµb −
∑

j

kµj − pµi = 0 .

implies

p̃µai + pµb −
∑

j

k̃µj = 0 .
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� Note also that the shifted momenta can be rewritten in the following way:

k̃µj = Λµ
ν(K, K̃) kνj ,

Λµ
ν(K, K̃) = gµν − 2(K + K̃)µ(K + K̃)ν

(K + K̃)2
+

2K̃µKν

K2
,

� the matrix Λµ
ν(K, K̃) generates a proper Lorentz transformation on the final-state momenta.

� If the emitted parton has zero transverse momenta, the Lorentz transformation reduces to the

identity.
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� Calculation of NLO corrections, give a better prediction for the rate.

� At NLO new parton processes can contribute.

� Extra radiation can modify kinematic distributions.
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Boughezal et al, 1605.08011

� Slicing methods have recently been applied

in NNLO calculations.

� Here for illustration we show results

obtained at NLO.

� The resolved region of phase space

corresponds to a calculation of the process

with one additional final state parton, in this

case one gluon emission.

� if a suitable resolution parameter is chosen,

the unresolved region can be directly

calculated.

� The jettiness of parton j with momentum

pj is defined as

τ(pj) = min
i=a,b,1,...,N

{
2 qi · pj

Qi

}
,

� The resolution parameter in the attached

plots is the jettiness, and the behaviour

below the cut is theoretically calculable.

� The resolution parameter should be chosen

small enough, that power corrections are

negligible, but not so small that numerical

errors in the cancellation dominate.

� Comparison of results calculated with

MCFM, using subtraction and slicing.
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� For NLO calculations, any one-loop amplitude (no matter how many legs) can be written as a sum

of sums of scalar integrals (boxes, triangles, bubbles and tadpoles)

� Scalar integrals are integrals with no numerator factors, e.g. box integral

ID4 (p21, p
2
2, p

2
3, p

2
4; s12, s23;m

2
1,m

2
2,m

2
3,m

2
4) =

µ4−D

iπ
D
2 rΓ

×
∫

dDl

1

(l2 −m2
1 + iε)((l+ q1)2 −m2

2 + iε)((l+ q2)2 −m2
3 + iε)((l+ q3)2 −m2

4 + iε)

� The determination of the coefficients,dj , cj , bj , aj can be determined by semi-numerical

methods, especially D-dimensional unitarity.

� R is a rational piece also determined by seminumerical methods

� The scalar integrals are all known analytically, see e.g. QCDLoop.fnal.gov, (RKE,Zanderighi)

� The OPP method of calculating one-loop integrals, exploits the known analytic form of the

integrand, and evaluates the coefficients in that analytic form numerically.

‘
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� As an example, consider the reduction of a rank-two two-point integral in two dimensions

Integrand and integral are,

I(k,m1,m2) =
(n̂ · l)2
d1d2

, I =

∫
ddl I(k,m1,m2)

where d1 = l2 −m2
1, d2 = (l+ k)2 −m2

2 and n̂ · k = 0, k2 6= 0 and n̂2 = 1.

� Because of the projection onto n̂, the momentum l in the numerator lies in the transverse space.

� Because l is a d-dimensional vector, we can decompose it as

lµ = (l · n)nµ + (l · n̂)n̂µ + nµ
ǫ (l · nǫ),

where nǫ is the unit vector that parametrizes the (D − 2)-dimensional vector space and n
defines the physical space.

nµ =
kµ√
k2

, n2 = 1, (nǫ · l)2 = µ2

(n̂ · l)2 = l2 − (n · l)2 − (nǫ · l)2 = l2 − (l · k)2
k2

− µ2.
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� To proceed further, we express various scalar products through inverse Feynman propagators

d1,2, l2 = d1 +m2
1, 2 l · k = d2 − d1 − r21

(n̂ · l)2
d1d2

= − (λ2 + µ2)

d1d2
+

1

4k2

[
r21 − 2 l · k

d1
+

r22 + 2 l · k + 2k2

d2

]
.

Note the following short-hand notations

r21 = k2+m2
1−m2

2, r22 = k2+m2
2−m2

1, λ2 =
k4 − 2k2(m2

1 +m2
2) + (m2

1 −m2
2)

2

4k2
.

� This is consistent with a general parametric decomposition,

(n̂ · l)2
d1d2

=
b0+b1(n̂·l)+b2(nǫ·l)2

d1d2
+

a1,0+a1,1(n·l)+a1,2(n̂·l)
d1

+
a2,0+a2,1(n·l)+a2,2(n̂·l)

d2
.

where the parameters take the values

b0 = −λ2, b1 = 0, b2 = −1,

a1,0 =
r21
4k2 , a1,1 = − 1

2
√
k2

, a1,2 = 0,

a2,0 =
r22
4k2 + 1

2
, a2,1 = 1

2
√

k2
, a2,2 = 0.
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� We begin by multiplying by d1, d2 and obtain

(n̂ · l)2 =
[
b0 + b1(n̂ · l) + b2(nǫ · l)2

]
+ [a1,0 + a1,1(n · l) + a1,2(n̂ · l)] d2

+ [a2,0 + a2,1(n · l) + a2,2(n̂ · l)] d1.

To see how this works, we first describe a procedure to compute the b-coefficients only.

� consider the loop momentum l that satisfies the constraints d1(l) = d2(l) = 0 and

simultaneously, has zero projection on the d-dimensional space, nǫ · l = 0.

� We find that there are just two loop momenta l that satisfy those constraints; they can be written

as

l±c = αcn± iβcn̂,

where

αc = − r21

2
√
k2

, βc = λ.

We substitute these two solutions and obtain two equations for the coefficients b0,1

b0 + b1n̂ · l+c = −λ2, b0 + b1n̂ · l−c = −λ2.

� It follows that b0 = −λ2 and b1 = 0.

� All other coefficients can be found numerically by iterating the procedure.

� this is the basis of the OPP method
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To find b2 we proceed along similar lines but we require that the scalar product l · nǫ does not vanish.

Since the conditions d1 = 0, d2 = 0 are equivalent to 2l · k + r21 = 0, l2 = m2
1, the loop

momentum that satisfies those constraints is the same as in Eq. (40), up to a change n̂ → nǫ,

l± = αcn± iβcnǫ.

Substituting l± into Eq. (1) and using b0 = −λ2, b1 = 0, we obtain

0 = (1 + b2)λ
2,

which implies that b2 = −1, in agreement with the result stated previously
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� Fully automatic procedures

� Madgraph5 aMC@NLO 1405.0301

� Helac-1Loop 1502.01521

� Go-Sam 1404.7096

� Approaches for greater number of legs of a

less automatic nature.

� Blackhat-Sherpa 1310.2808

� Njet 1312.7140

� Libraries of simple processes

� MCFM,

hep-ph/9905386,arXiv:1503.06182

� VBFNLO, arXiv:1404.3940
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Process µ nlf Cross section (pb)

LO NLO

pp→ tt̄ mtop 5 123.76± 0.05 162.08± 0.12

pp→ tj mtop 5 34.78± 0.03 41.03± 0.07

pp→ tjj mtop 5 11.851± 0.006 13.71± 0.02

pp→ tb̄j mtop/4 4 31.37± 0.03 32.86± 0.04

pp→ tb̄jj mtop/4 4 11.91± 0.006 7.299± 0.05

pp→ (W+ →)e+νe mW 5 5072.5± 2.9 6146.2± 9.8

pp→ (W+ →)e+νe j mW 5 828.4± 0.8 1065.3± 1.8

pp→ (W+ →)e+νe jj mW 5 298.8± 0.4 289.7± 0.3

pp→ (γ∗/Z →)e+e− mZ 5 1007.0± 0.1 1170.0± 2.4

pp→ (γ∗/Z →)e+e− j mZ 5 156.11± 0.03 203.0± 0.2

pp→ (γ∗/Z →)e+e− jj mZ 5 54.24± 0.02 54.1± 0.6

pp→ (W+ →)e+νebb̄ mW + 2mb 4 11.557± 0.005 22.95± 0.07

pp→ (W+ →)e+νett̄ mW + 2mtop 5 0.009415± 0.000003 0.01159± 0.00001

pp→ (γ∗/Z →)e+e−bb̄ mZ + 2mb 4 9.459± 0.004 15.31± 0.03

pp→ (γ∗/Z →)e+e−tt̄ mZ + 2mtop 5 0.0035131± 0.0000004 0.004876± 0.000002

pp→ γtt̄ 2mtop 5 0.2906± 0.0001 0.4169± 0.0003

pp→W+W− 2mW 4 29.976± 0.004 43.92± 0.03

pp→W+W− j 2mW 4 11.613± 0.002 15.174± 0.008

pp→W+W+ jj 2mW 4 0.07048± 0.00004 0.08241± 0.0004

pp→HW+ mW + mH 5 0.3428± 0.0003 0.4455± 0.0003

pp→HW+ j mW + mH 5 0.1223± 0.0001 0.1501± 0.0002
pp→HZ mZ + mH 5 0.2781± 0.0001 0.3659± 0.0002
pp→HZ j mZ + mH 5 0.0988± 0.0001 0.1237± 0.0001
pp→Htt̄ mtop + mH 5 0.08896± 0.00001 0.09869± 0.00003

pp→Hbb̄ mb + mH 4 0.16510± 0.00009 0.2099± 0.0006
pp→Hjj mH 5 1.104± 0.002 1.333± 0.002
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� Parton branching gives rise to universal branching probabilities, independent of the process.

� The DGLAP equation predicts the change with scale of the parton distributions: shrinkage at large

x and growth at small x.

� The branching probabilities are the basis of shower Monte Carlo programs

� The master formula predicts that hadron-hadron processes are factorized. Parton distributions

measured, e.g. in deep inelastic scattering, can be used at LHC

� NLO corrections can be used to give exclusive predictions using subtraction or slicing methods.

� Virtual amplitudes can also be calculated numerically exploiting general parameterizations of the

one loop amplitudes.

� If the number of partons is not too large, fully automatic procedures can be used to calculate NLO

corrections.
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