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Cramming more components
onto integrated circuits

With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor

division of Fairchild Camera and Instrument Corp.

The future of integrated electronics is the future of electron-
ics itself. The advantages of integration will bring about a
proliferation of electronics, pushing this science into many
new areas.

Integrated circuits will lead to such wonders as home
computers—or at least terminals connected to a central com-
puter—automatic controls for automobiles, and personal
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machine instead of being concentrated in a central unit. In
addition, the improved reliability made possible by integrated
circuits will allow the construction of larger processing units.
Machines similar to those in existence today will be built at
lower costs and with faster turn-around.
Present and future

By integrated electronics, [ mean all the various tech-

The components are approaching a fundamental

limit of smallness: the atom
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Stuttering Chip introduction
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Double, double, toil and trouble

"The number ot people predicting the death of Moore's
Law doubles every two years” Peter Lee (a VP at Microsoft)


http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

Faith no Moore
Selected predictions for the end of Moore’s law

I This can't go on

Design cost by chip component size in nm, $m
1995 2000 2005 2010 2015 2020 2025 2030

G. Moore, Intel o o 300

D. Hutcheson,
VLSI Research

I. Chuang, IBM Research 600
P. Gargani, Intel @===F==cmcccdecccccc e e ccccca e |
L. Krauss, Case Western, =~ N N ~ approx. 2600 400
& G. Starkman, CERN
G. Moore, Intel @=======cdccccca=-. 2015-25
e i 200
: M. Kaku, City College of NY @======mmmmem e e W2021-22
Cited reason: ”
M Economic imits R. Colwell, DARPA: (formerly Intel) @===—==-===-- 2020-22
M Technical limits 0

G. Moore, Intel @=-=====—cccccaaa—- B 65 45 28 20 16 10 / 5

Sources: Intel; press reports; The Economist Source: IB Consulting




A pipeline of new technologies to prolong Moore’s magic

THE world’s IT firms spend huge amounts on research and development. In 2015 they
occupied three of the top five places in the list of biggest R&D spenders compiled by
PricewaterhouseCoopers, a consultancy. Samsung, Intel and Microsoft, the three
largest, alone shelled out $37 billlon between them. Many of the companies are
working on projects to replace the magic of Moore’s law. Here are a few promising

1deas.

Optical communication: the use of
light instead of electricity to
communicate between computers, and
even within chips. This should cut
energy use and boost performance

l’_j. ‘." -~ 44 ').~ ool 5 - e " - r— I—‘{ 3 -~ —
Tewieli-racKkard, mdadssacriuseLrLs

Better memory technologies: buildin

0D

new kinds of fast, dense, cheap

memory to ease one bottieneck 1n

computer performance Intel, Micron.

Quantum-well transistors: the use of
quantum phenomena to alter the
behaviour of electrical-charge carners
In a transistor to boost 1ts
performance, enabling extra iterations
of Moore’s law, 1ncreased speed and

lower power consumption Intel.

Developing new chips and new

software to automate the writing of

code for machines built from clusters

R

of specialised chips. This has provec

espeqally difficult Soft Machines.

Approximate computing: making

(L L L L L L L L L L L L L L L Ll

computers’ internal representation of
numbers less precise to reduce the
numbers of bits per calculation and
thus save energy; and allowing
computers to make random small
mistakes 1n calculations that cancel
each other out over time, which will
also save energy University of

Y "

L/, , ".,-- Py P— -
h’-.'.’_\"-u'."l'..'CL".'.', MICTOSOIL.

Neuromorphic computing: developing
devices loosely modelled on the

tangled, densely linked bundles of

neurons that process information 1n

—

animal brains. This may cut energy use

and prove useful for pattern
recogmtion and other Al-related tasks

BM. Qualcomm.

- -

Carbon nanotube transistors: these
rolled-up sheets of graphene promise
low power consumption and high

as araphene does. Unike

speed,
graphene, they can also be switched
off easily. But they have proved
diffhicult to mass-produce IBM,
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“I think data-scientist is a sexed up term for a statistician,” Nate
Silver told an audience of statisticians in 2013 at a

Joint Statistical Meeting

This timeline that follows was published
in WhatsTheBigData.com

See also A Very Short History of Big Data and A Very Short
History of Information Technology (Gil Press)



http://www.statisticsviews.com/details/feature/5133141/Nate-Silver-What-I-need-from-statisticians.html
http://whatsthebigdata.com/
http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/
http://www.forbes.com/sites/gilpress/2013/04/08/a-very-short-history-of-information-technology-it/

— 1962 John W. Tukey writes in “The Future of Data
Analysis”: “For a long time | thought | was a
statistician, interested in inferences from the
particular to the general. But as | have watched
mathematical statistics evolve, | have had cause to
wonder and doubt... | have come to feel that my
central interest Is in data analysis... Data analysis,
and the parts of statistics which adhere to it, must...
take on the characteristics of science rather than
those of mathematics... data analysis is intrinsically
an empirical science... How vital and how
important... is the rise of the stored-program
electronic computer? In many instances the answer
may surprise many by being ‘important but not
vital,” although in others there is no doubt but what | e e
the computer has been ‘vital.”” In 1947, Tukey | 8| ot e sieeirrres
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coined the term “bit” which Claude Shannon used
in his 1948 paper “A Mathematical Theory of
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— 1974 Peter Naur publishes Concise Survey of Computer Methods in
Sweden and the United States. The book is a survey of contemporary
data processing methods that are used in a wide range of applications. It
is organized around the concept of data as defined in the IFIP Guide to
Concepts and Terms in Data Processing: “[Data is] a representation of
facts or ideas Iin a formalized manner capable of being communicated or
manipulated by some process.” The Preface to book tells the reader
that a course plan was presented at the IFIP Congress in 1968, titled
“Datalogy, the science of data and of data processes and its place In
education,” and that in the text of the book, the term ‘data science’ has
been used freely.” Naur offers the following definition of data science:
“The science of dealing with data, once they have been established, while
the relation of the data to what they represent is delegated to other fields
and sciences.”
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— 1989 Gregory Piatetsky-
Shapiro organizes and chairs
the first Knowledge Discovery In
Databases (KDD) workshop. In
1995, it became the annual ACM
SIGKDD
Conference
on Knowledge

— 1977 The International
Association for Statistical
Computing (IASC) is established
as a Section of the ISI. “It is the
mission of the IASC to link
traditional statistical
methodology, modern computer
technplogy, and_the knowledge of Discovery and
domain experts in order to .

. . . Data Mining
convert data into information and
B LOD)E
knowledge.
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— September 1994 BusinessWeek publishes a cover story on
“Database Marketing”

— 1996 Members of the International Federation of Classification
Societies (IFCS) meet in Kobe, Japan, for their biennial conference.
For the first time, the term “data science” is included in the title of
the conference (“Data science, classification, and related methods™)

— 1996 Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth
publish “From Data Mining to Knowledge Discovery in Databases.”

— 1997 In his inaugural lecture for the H. C. Carver Chair in Statistics at
the University of Michigan, Professor C. F. Jeff Wu (currently at
the Georgia Institute of Technology), calls for statistics to be
renamed data science and statisticians to be renamed data

w / 1111111111/, 7/////7 1111111111111/,
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— 1997 The journal Data Mining and Knowledge Discovery is launched

— December 1999 Jacob Zahavi is quoted in “Mining Data for Nuggets of Knowledge” in
Knowledge@Wharton: “Conventional statistical methods work well with small data sets.
Today’s databases, however, can involve millions of rows and scores of columns of data...
Scalability is a huge issue in data mining....”

— 2001 William S. Cleveland publishes “Data Science: An Action Plan for Expanding the
Technical Areas of the Field of Statistics.” It is a plan “to enlarge the major areas of
technical work of the field of statistics. Because the plan is ambitious and implies
substantial change, the altered field will be called ‘data science.’”

— April 2002 Launch of Data Science Journal, publishing papers on “the management of data
and databases in Science and Technology.

— January 2003 Launch of Journal of Data Science: “By ‘Data Science’ we mean almost
everything that has something to do with data: Collecting, analyzing, modeling...... vet the
most important part is its applications—all sorts of applications. This journal is devoted to
applications of statistical methods at large...



— September 2005 The National Science Board publishes “Long-lived
Digital Data Collections: Enabling Research and Education in the
21st Century.” One of the recommendations of the report reads: “The
NSF, working in partnership with collection managers and the
community at large, should act to develop and mature the career
path for data scientists and to ensure that the research enterprise
includes a sufficient number of high-quality data scientists.” The
report defines data scientists as “the information and computer
scientists, database and software engineers and programmers,
disciplinary experts, curators and expert annotators, librarians,
archivists, and others, who are crucial to the successful management
of a digital data collection.”
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— March 2009 Kirk D. Borne and other astrophysicists submit to the
Astro2010 Decadal Survey a paper titled “The Revolution in
Astronomy Education: Data Science for the Masses “

— September 2010 Drew Conway writes in “The Data Science Venn
Diagram”: “...lI present the Data Science Venn Diagram... hacking
skills, math and stats knowledge, and substantive expertise.”

— May 2011 David Smith writes in “’Data
Science’: What’s in a name?”: .... |
think ‘Data Science’ better describes
what we actually do: a combination of
computer hacking, data analysis, and

Substantive

Expertise prOblem SO'Ving.”
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— DNN can encapsulate expensive computations (MEM or Simulations)

— DNN can be faster than traditional algorithm (after training)
— DNN already parallelized and optimized for GPU/HPCs
- boost from industry building optimized chips, HPC systems, clouds
etc
— DL solution to HEP data (e.g. HL-LHC) outpacing Moore’s law

— cannot assume we will get 10x computing power for same $ in 1
years

— DL could replace reconstruction difficulties (e.g. in LAr TPCs)
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Improved Event Selection

P. Vahle, Neutrino 2016

This analysis features a new event selection technique
based on ideas from computer vision and deep learning

[ 16 JE |

Calibrated hit maps are

inputs to Convolutional Visual
Network (CVN)

Series of image processing

transformations applied to ol 1 ‘ |
extract abstract features 6o} . | T
sol | i s P
Extracted features used as @403'-;__.__‘. | —p :
inputs to a conventional il A :
neural network to classify the |
evenll. 00 2‘0 40 60 8b 100
Plane
Improvement in sensitivity from CVN
equivalent to 30% more exposure
£& Fermilab

8/12/2016 Joe Lykken | Fermilab update
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ArgoNeuT Mint LAYy TPC Exposure to Fermilab’s NuM| Beam

LArTPC

Time Projection Chamber

ic Fi ic Fi Electric Field
Lo Electric Field < Electric Field -

Electric Field Electric Field Electric Field |
-4 e - .

Neutrino interaction in LAr produces Drift the ionization charge in a Read out charge and light produced
ionization and scintillation light uniform electric field using precision wires and PMT's

___

" ArgoNeuT Data -' ArgoNeuT Data
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Tracking, Calorimetry, and Particle ID in same detector.
Goal ~80% Neutrino Efficiency.
All you need for Physics I1s neutrino flavor and energy.
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e/gamma PID

Input Feature maps Feature maps Feature maps Feature maps Ouput
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Train
Convolution Subsampiing Convolution Subsampling Convolution
Deep Convolutional Neutral Network
(GooglLeNet) ArgONGUT
Raw Data: Wire ADC vs Time x Planes gz}t;; ::fhbr\?; ;f:r‘zg;/g
(LArIAT Simulation) optimization. ’
* First results with neutrinos: 8 1 20k_Training-sample
8 40k_Training-sample
e 5% NC at 80% CC ’; 0.8 50k_Training-sample
=]
&
* 15% Muon CC at 80% Electron CC ool
* Regression working on Neutrino Energy | |
0.4}
- Best Results: 2% |
» DL efforts present also in other LArIPC ol at 90% Electron j
experiments (not yet public). 0.2 Efficiency /
» May be easy and ideal tool for Detector oy vy e T o |

Electron to be Electron

Optimization.
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MicroBooNE-NOTE-1019-PUB
Convolutional Neural Networks Applied to Neutrino
Events in a Liquid Argon Time Projection Chamber

MicroBooNE-Note-1019-PUB

MicroBooNE Collaboration

//
A
July 4. 2016 : s
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Abstract /
Input feature map

We present several studies of convolution neural networks applied to data coming
from the MicroBooNE detector, a liquid argon time projection chamber (LArTP(C). sure 3 Ihe input and output connections of one neuron in a convolutional neural
T } T » = e | ' A /" network (CNN). The neuron looks at a local volume of pixel values arranged in an M X
The algorithms studied include the classification of single particle images, the local- N~ x L tensor. The input consists of a M x N image with L color channels, represented
. . . . . . . . . . by the 3D grid on the left. In a CNN, one such neuron acts only on one sub-region at a
ization of single particle and neutrino interactions in an image, and the detection . but, in turn, it acts on all sub-regions of the input as it is scanned over the height
of a simulated neutrino event overlaid with cosmiec ray backgrounds taken from rea]l @vd wdth dimensions. By arranging the outputs of the neuron as it is being scanned

' - . across into a 2D gnd, one forms a feature map, represented by the right most grid.

detector data. The purpose of these studies was to demonstrate the potential of
these networks for particle identification or event detection with simulated neutrino
interactions and to address a number of technical issues that arise when applying
this technique on data from a large LAr'TPC located near the surface. The results
of these studies can be used to guide similar applications on detector neutrino data.
We developed and validated techniques and approaches that demonstrate success-
ful application of these networks for particle identification or event detection on

simulated data and can be used to guide similar application on detector data.
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|deally suited for “imaging”

Electromagnetic- Highly transverse and longitudinal segmented.

Tile barrel Tile extended barrel

* Hadronic- Longitudinal sampling | /

« 200K Calorimeter cells measure energy ‘
deposits i LAr hadronic a

———
. |
77,

end-cap (HEC) —— » &
Sk
« ~64x36x /73D Image R s 7
end-cap (EMEC)

* Interesting Challenges: non-uniform
granularity, cylindrical geometry.

LAr electromagnetic
barrel
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Back - HCAL - 12 layers of
Brass/Scintillator 5.5 A

Front - HCAL - 12

layers of Brass/Si 3.5 A

ECAL 30 layers of W/Pb/Si
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3D Calorimeter Imaging

100GeV Photon

LCD Calorimeter

configuration
http://lcd.web.cern.ch

100GeV Pi0

5x5 mm Pixel calorimeter

28 layer deep

Photon and pion particle gun

06/20/16

DL 1in HEP_ Erice-54 School. EMFCSC. vlimant

2D x 25 channels
—— Convolutional N
+ dense layers
Limited dataset

5% efficiency
5% fake

@cern.ch




Generative Models

(" Arxiv:1411:5928, Dosovitskiy,
Springenberg, Tatarchenko, Brox
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Computer science can generate
Images, text, sound

Performing image arithmetic

Simulation of collision events is
very computation intensive

Faster simulation with such
generative models

Address computing bottlenec

Enable science program

06/20/16 DL 1in HEP. Erice-54 School. EMFCSC. vlimant@cern.ch
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— Improved classification/regression with Convolutional
NNs

— Fast Showers with Generative models

— Feature (particle) extraction with Regional NN and
semantic segmentation

— Full event classification (RN, RT)

— ++Detector optimization !!



v/ //R/ /)
// /W

7/////// ACKING/N ////
Hits associated to found tracks only. \ *\ \\ , \‘, 7

At least as many pre-filtered or not associated AR At 1/{ Y/
-~ // A P

E; 4"""7
4

/"

/ 4 ’y/' 72 ‘3‘——-_§.
g == S



/ ' ‘/,/ /'/ /‘/,".

/177771

/////////4

2/27/16

Tracks Pattem Recognition

From sparse 2D/3D points reconstruct the path of a charged particle
Iterative process using combinatorics, Kalman Fitting and Filtering
Most CPU intensive part of the event reconstruction (~10s /event)
Computation time scales ~quadratically with number of interactions
Any fraction ofg! (n;“ that can identified faster will make a difference
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Seeding Classification Track
Formation

« Investigation may involve
> Application of scene labeling to seed formation
> Application of object detection to track assembling

= t et al. ICML 2012, PAMI 2013 i
arabet et al. ICML 2012, 20 > More reference algorithms

 Group and classify what each pixel belongs to . o ,
. Real-time video processing with deep « Medium/High risk, very high reward problem
> Exploratory phase on the model definition

~ Attribute each Xtal to a cluster
- Attribute tracker hit to a charged particle

06/20/16 DL 1in HEP, Erice-54 School, EMFCSC, viimant@cemn.ch 06/20/16 DL 1n HEP, Erice-54 School, EMFCSC, viimant@cern.ch




b/

Hadronic activity results in bundle of collimated particilﬁes
The more energetic, the more collimated : W-jet

With even higher energy, even mother particles are collimated top-jet, Higgs-jet
Available discriminators are performing well. Not taking advantage of the full

substructure of the jets
Image processing methods are natural candidates to perform the classification

energy

Small dataset, 11 categories
60% accuracy on gluon versus any
quark. pre-preliminary

06/20/16 DL 1n HEP, Erice-54 School, EMFCSC, viimant@cern.ch
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Top Tagger arXiv: 1501.05968 Almeida, Backovic, Cliche, Lee, Perelstein
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Neuromorphic Hardware

Brain inspired low power silicon hardware
M40 P Spiking neurons for general computation
7 TFIOps ' « GPUs are the workhorse for e L - Demonstrated to perform well on pattern
: g;gw : parallel computing (tne 8 —0)/ recognition problems
* Enable training large models, with | e e —onsnces ® UNSUpervised learning capabilities on

large dataset [y p— —— Some models
* Deep learning facility clusters q Il|I A SR\

nput pattern

Dative marosies - = Reural On-going collaboration with iniLab & INI
PR ) G e £ Zurich

Qrror correcton

R : RIEE 2 | %
| ‘ > > Aiming at application to calorimeter
B ' ME hm P | pattern recognition in level 1-2 of the
* Emergence of small GPU ‘ - . o trigger

 Not dedicated to training E = B » Potential application as accelerator cgrd

e Strike the balance between | - http://www.nature.com/articles/srep14730
Tflops/$ for inference >2 TFIOps

 Deployment on the grid . 7Kk$
. 50W
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xed oMo just on

++ cognitive computing (e.g. IBM TrueNorth Spiking neuron technology, low
power consumption — application to pattern recognition)
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Machine Learning Not Only for Data

Schedule processing jobs on the grid
Optimize network usage

Reduce storage utilization

All of the above

Apply language processing to machine logs for
fault prediction

Data certification

munds.a1 visit, DS@LHC Opprotunities, J.-R. Vlimant

ﬁ Google DeepMind Home AlphaGo DQN  Healtl Press  Join

by Rich Evans, Research Engineer, DeepMind and Jim Gao, Data Centre Engineer, Google

From smartphone assistants to image recognition and translation, machine learning already helps us in our everyday lives

But it can also help us to tackle some of the world’s most challenging physical problems -- such as energy consumption.

Large-scale commercial and industrial systems like data centres consume a lot of energy, and while much has been done

to , , there remains a lot more to do given the world's increasing need for computing power.
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— Deep learning has leaped forward over the last decade

— Machine learning is a potential solution to several HL-LHC
computational challenges

— Deep learning can further enable & accelerate scientific return, by
tackling complexity

— Engage & collaborate with Data Science Experts on HEP Challenges

Data Science @

|
- http://cern.ch/DataScienceLHC2015
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http://cern.ch/DataScienceLHC2015
https://indico.cern.ch/event/514434
https://indico.hep.caltech.edu/indico/event/102

* 1000 Hz 80% uptime

« 25B data events / year
 150M CPUh @ 20s/event

 40PB @ 1.oMB/event

« Simulation Is half but takes more space and
requires more CPU

e Analysis lightweight datasets of the order 1018
e Analysis ran on the cluster / grid mostly 1/O bound
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Original Past 48 hours were spent trying to repeat the entire

G e o 4 Pe =N g analysis with the photon ID corrected.
¢ 24-hour analysis (shift) coverage for past 3 days between:
rrl':'l,“. | e CERN ( Dustin, Jay, Zhicai)
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