44th SLAC summer institute Lecture III: QCD parton model: Jets and Top

Ingredients for a parton calculation

Ingredients for a parton calculation	•
Parton luminosity	•
Jet physics	•
Jet algorithms	•
Branching kinematics	•
Higgs and QCD branchings compared: angular separation	•
Higgs and QCD branchings compared: mass drop	•
Separating signal and background in $VH(\rightarrow b\bar{b})$	•
Higgs tagging-filtering	•
Why top?	•
LO Top production	•
NLO Heavy quark production	•
Scale dependence	•
NNLO	•
Top @NNLO	•
NNLO top	•
Recap	•
Bibliography	•

Factorization formula

$$\sigma(S) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(\hat{s} = x_1 x_2 S, \alpha_s(\mu^2), Q^2/\mu^2)$$

- Non-perturbative parton distributions $f_i(x, \mu^2)$ with calculable scale dependence.
- Short distance cross section that depends on α_s and factorization scale μ .
- Value of the coupling α_s with known scale dependence.

Parton luminosity

Ingredients for a parton calculation

Parton luminosity

- Jet physics
- Jet algorithms
- Branching kinematics
- Higgs and QCD branchings compared: angular separation
- Higgs and QCD branchings compared: mass drop
- Separating signal and
- background in $VH(\rightarrow b\bar{b})$
- Higgs tagging-filtering
- Why top?
- LO Top production
- NLO Heavy quark production
- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

- Parton luminosity is determined by the parton distribution functions, $f_i(x_1, \mu^2)$ and $f_j(x_2, \mu^2)$.
- $f_j(x_i, \mu^2)$ need to be determined by data.
- the available centre-of-mass energy-squared of the parton-parton collision, \hat{s} , is less than the overall hadron-hadron collision energy, s, by a factor of $x_1x_2 \equiv \tau$.
- Define differential parton luminosities

$$\tau \frac{dL_{ij}}{d\tau} = \frac{1}{1+\delta_{ij}} \int_0^1 dx_1 dx_2 \\ \times \Big[\Big(x_1 f_i(x_1,\mu^2) \, x_2 f_j(x_2,\mu^2) \Big) + \Big(1 \leftrightarrow 2 \Big) \Big] \delta(\tau - x_1 x_2).$$

- The collider luminosity is quite distinct from the parton luminosity. The former is a property of a machine, whereas the latter is a property of the proton.
- We now assume that $\hat{\sigma}$ depends only on \hat{s} .

$$\sigma(s) = \sum_{\{ij\}} \int_{\tau_0}^1 \frac{d\tau}{\tau} \left[\frac{1}{s} \frac{dL_{ij}}{d\tau} \right] \left[\hat{s} \hat{\sigma}_{ij} \right],$$

Parton luminosity

Ratios of luminosities

Jet physics

Ingredients for a parton calculation

- Parton luminosity
- Jet physics
- Jet algorithms
- Branching kinematics
- Higgs and QCD branchings compared: angular separation
- Higgs and QCD branchings compared: mass drop
- Separating signal and background in
- $VH(\rightarrow b\bar{b})$
- Higgs tagging-filtering
- Why top?
- LO Top production
- NLO Heavy quark production
- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

~~**lp**3~~

- There is little doubt that jet physics displays fundamental scattering of constituents.
- Probes pointlike behaviour on shortest distance scales.
- But what is a jet?

Jet algorithms

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings compared: angular separation

Higgs and QCD branchings compared: mass drop

Separating signal and background in $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

- Jet structure is obvious to the naked eye;
- A jet definition is like a legal contract between theorists and experimenters; many contracts are possible, different contracts are useful in different circumstances, but all contracts must be defined precisely
- a jet definition requires:-
 - □ a jet algorithm
 - \Box jet parameters, e.g. a cone size R
 - □ a recombination scheme for combining entities
- Desirable properties; infrared safety, speed, defined jet area for subtraction of pile up and underlying event.
- Two types of jet algorithms.
 - □ Sequential recombination algorithm
 - □ Cone algorithms

The two classes of jet algorithms

Ingredients for a parton calculation

- Parton luminosity
- Jet physics
- Jet algorithms
- Branching kinematics
- Higgs and QCD branchings compared: angular
- separation
- Higgs and QCD branchings compared: mass drop
- Separating signal and
- background in $VH(\rightarrow b\bar{b})$
- Higgs tagging-filtering
- Why top?
- LO Top production
- NLO Heavy quark production
- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

- Sequential recombination algorithms
 - □ Combine entities (particles) starting with the closest ones
 - □ Requires definition of close, (distance measure)
 - $\hfill\square$ Iterate recombination until there are few entities (jets) left
 - \Box Examples, Jade, k_t , Cambridge/Aachen, anti- k_t
- Cone algorithms
 - □ Identify regions with large energy flow
 - □ Cone algorithms give rise to regular jets which are easier to calibrate, and to remove underlying event.
 - □ Examples, ATLAS cone, CMS cone, SIScone

I shall only talk about sequential recombination algorithms in the following.

Sequential recombination jet algorithms

Ingredients for a parton calculation

Parton luminosity

- Jet physics
- Jet algorithms
- Branching kinematics
- Higgs and QCD branchings compared: angular
- separation
- Higgs and QCD branchings compared: mass drop
- Separating signal and background in $VH(\rightarrow b\bar{b})$
- Higgs tagging-filtering
- Why top?
- LO Top production
- NLO Heavy quark production

Scale dependence

- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

introduce distances (d_{ij}) between entities (particles, pseudojets) i and j and between an entity and the beam (d_{iB})

$$d_{ij} = \min(k_{t\,i}^{2p}, k_{t\,i}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \ d_{iB} = k_{t\,i}^{2p}$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- $k_{t\,i}, y_i, \phi_i$ are the transverse momentum, rapidity and azimuth of entity i
- Clustering proceeds by identifying the smallest of the distances;
 - \Box if it is d_{ij} recombine entities *i* and *j*;
 - \Box if it is d_{iB} , call *i* a jet and remove it from the list of entities to be clustered.
 - □ iterate
- Note that entities separated in angle, such that $\Delta R_{ij}^2 > R^2$ will never be clustered.
- Sequential recombination algorithms return not only a list of jets, but also a clustering sequence, which contains valuable information about the morphology of the event.

Infrared safety of k_t algorithms

Ingredients for a parton calculation

Parton luminosity

- Jet physics
- Jet algorithms
- Branching kinematics
- Higgs and QCD branchings compared: angular
- separation
- Higgs and QCD branchings compared: mass drop
- Separating signal and
- background in $VH(\rightarrow b\bar{b})$
- Higgs tagging-filtering
- Why top?
- LO Top production
- NLO Heavy quark production
- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

introduce distances between entities (particles, pseudojets) i and j (d_{ij}) and between an entity and the beam (d_{iB})

$$d_{ij} = \min(k_{t\,i}^{2p}, k_{t\,i}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \ d_{iB} = k_{t\,i}^{2p}$$

- Establish IR safety by asking how clustering sequence would change, with the addition of soft or collinear radiation.
 - emission of a collinear particle, $\Delta y^2 + \Delta \phi^2 \rightarrow 0$ in all cases means that the jet measure $d_{ij} \rightarrow 0$. Hence collinearly emitted particles are clustered first, leaving resultant jets unchanged.
 - for p=1, a new soft particle, $k_{t\,i} \rightarrow 0$ gives the smallest d_{ij} , hence clustered first leaving jets unchanged.
 - for p=0, a new soft particle can be a new jet of zero momentum, leaving hard jets unchanged
 - for p=-1, a new soft particle $k_{t\,i} \to 0$ gives the largest $d_{ij} \to \infty$, clustered last or new zero-momentum jet, leaving hard jets unchanged.

- Ingredients for a parton calculation Parton luminosity Jet physics
- Jet algorithms
- Branching kinematics Higgs and QCD branchings compared: angular separation Higgs and QCD branchings compared: mass drop Separating signal and
- background in $VH(\rightarrow b\bar{b})$
- Higgs tagging-filtering
- Why top?
- LO Top production
- NLO Heavy quark production
- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

Jet algorithm	distance measure	Authors	Scaling
SIScone	Seedless iterative cone	Salam et al, 0704.0292	$N^2 \ln N$
	with split-merge		
k_t	$d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta_{ij} / R^2,$	Catani et al,NPB406 (1993)	$N \ln N$
	Ordered in k_t	S.Ellis et al, 9305266	
Cambridge/	$d_{ij} = \Delta_{ij} / R^2,$	Dokshitzer et al,9907280	$N \ln N$
Aachen	Ordered in angle	Wengler et al, 9907280	
anti- k_t	$d_{ij} = \min(k_{ti}^{-2}, k_{ti}^{-2}) \Delta_{ij} / R^2,$	Cacciari et al, 0802.1189	$N^{3/2}$
	Gives conical hard jets		

- Siscone, Seedless infra-red safe algorithm
- Infrared safety is both a theoretical necessity and an exprimental imperative.

Sequential recombination jet algorithms compared

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics Higgs and QCD branchings compared: angular separation Higgs and QCD branchings compared: mass drop Separating signal and background in $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

 k_t algorithm (p = 1); d_{ij} distance measure is the inverse of the branching probability, (the pair which is recombined first is the one with the largest probability to have branched last). The clustering sequence has a physical meaning. Helpful for theoretical resummation.

C/A algorithm (p = 0); still contains features of the parton shower because of the angular ordering property of QCD radiation; it is a compromise between the structure of the parton shower and limiting the sensitivity to soft radiation.

the anti- k_t algorithm (p = -1); soft radiation is always clustered last; gives rise to approximately conical jets. A bizarre choice, which nevertheless gives very useful jets for pileup and underlying event subtraction.

Branching kinematics

Jet mass

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

- Higgs and QCD branchings compared: angular
- separation
- Higgs and QCD branchings compared: mass drop
- Separating signal and

background in

 $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

In the collinear approximation the amplitude to radiate an extra parton can be written as

 $d\sigma_{n+1} \approx d\sigma_n \, dz \, \frac{dt}{t} \, \frac{\alpha_s}{2\pi} \, P(z),$

 $m^2=t$ is the jet mass, and z is the longitudal momentum branching fraction. The splitting function P(z) for $q \to gq$ is

$$P_{gq}(z) = C_F \frac{1 + (1 - z)^2}{z}$$

$$\langle m^2 \rangle = \langle t \rangle \approx \int_0^1 dz \int_0^{t_{\text{max}}} \frac{dt}{t} t \frac{\alpha_s}{2\pi} P_{gq}(z)$$

The jet algorithm imposes that $\Delta R_{bc} < R$, and hence that $t_{max} = \mathbf{p}_T^2 R^2 z (1-z)$. taking a fixed α_s for the moment we see that

$$\langle m^2 \rangle \approx \mathbf{p}_T^2 R^2 \, \frac{\alpha_s}{2\pi} \, \int \, dz \, z(1-z) \, P_{bc}(z).$$

leading to the conclusion $\langle m^2 \rangle \propto \mathbf{p}_T^2 R^2 \frac{\alpha_s}{2\pi} C_F / C_A.$

Plots display Casimir broadening

Higgs and QCD branchings compared: angular separation

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop Separating signal and background in

 $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

From the kinematics of branching alone, we have established that

$$\sqrt{\Delta R_{ij}^2} \sim rac{m}{p_T} rac{1}{\sqrt{z(1-z)}} \sim rac{2m}{p_T}.$$

Evaluate the distance measure y_{bc} in the presence of a splitting function $P \rightarrow bc$:

$$y_{bc} = \frac{\min(\mathbf{b}_T^2, \mathbf{c}_T^2)}{m^2} \times \Delta R_{bc}^2 \approx \frac{p_T^2 z^2}{m^2} \times \frac{m^2}{p_T^2 z(1-z)} \approx \frac{z}{1-z}$$

At fixed jet mass this is the result for the decay of a Higgs boson. QCD jets give rise to a different result, especially because of the 1/z-behaviour.

$$\begin{array}{lll} P_{h \rightarrow b \bar{b}} & \propto & 1 \\ P_{q \rightarrow g q} & \propto & \frac{1 + (1 - z)^2}{z} \\ P_{g \rightarrow q \bar{q}} & \propto & z^2 + (1 - z)^2 \end{array}$$

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop

Separating signal and background in

 $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

- A boosted Higgs with mass m_H , decays to (essentially) massless daughters in one step;
- QCD splittings favour slower degradation in the virtuality.
- the Sudakov form factor expresses the probability of evolving from an initial virtuality t_0 to a final virtuality t without branching:

$$\Delta(t) = \exp\left[-\int_{t_0}^t \frac{dt'}{t'} dz \frac{\alpha_s}{2\pi} P(z)\right].$$

In the fixed coupling constant approximation we find that,

$$\Delta(t) \propto \left(\frac{t_0}{t}\right)^{p}$$

for p > 0, $\Delta(t) \to 0$ for large t. The probability of a QCD jet arriving at mass squared t_0 , from a large mass squared t falls like a positive power of (t_0/t)

Separating signal and background in $VH(o bar{b})$

calculation Parton luminosity Jet physics Jet algorithms Branching kinematics Higgs and QCD branchings compared: angular separation Higgs and QCD branchings compared: mass drop Separating signal and background in $VH(\rightarrow b\bar{b})$ Higgs tagging-filtering Why top? LO Top production NLO Heavy quark production

Ingredients for a parton

- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

- \Box the splitting will be symmetric,
- the jet mass fill drop faster in the branching

- the BDRS procedure (arXiv:0802.2470) exploits these two features
- First cluster the event on a large angular scale, $R_{b\bar{b}}$, using the Cambridge-Aachen jet definition. (The clustering scale of $R_{b\bar{b}}$ is set by $2m/|\mathbf{p}_T|$).
- Undo the cluster sequence one branching at a time and check on the mass drop and symmetry of the branching, to identify whether the branching belongs in the Higgs neighbourhood. The declustering involves two dimensionless parameters, μ (0.67) and y_{cut} (0.09):

```
\max(m_i, m_j) < \mu m_P(\text{massdrop}), \quad y_{ij} > y_{cut}(\text{symmetric})
```

Continue until either a Higgs-like branching has been identified or no jets remain.

Higgs tagging-filtering

- Ingredients for a parton calculation
- Parton luminosity
- Jet physics
- Jet algorithms
- Branching kinematics
- Higgs and QCD branchings
- compared: angular
- separation
- Higgs and QCD branchings compared: mass drop Separating signal and
- background in
- $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

- Why top?
- LO Top production
- NLO Heavy quark production
- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

- Filter the Higgs neighbourhood, by clustering the events on a smaller angular scale
 - $R_{\rm filt} < R_{b\bar{b}}$ and keep only the three hardest subjets (to allow for b, \bar{b} and possible parton radiation).
- This step helps to remove pile-up.
- MC results for 30 fb⁻¹ (a) e^+e^- or $\mu^+\mu^-$ (b) lepton + Missing transverse momentum (c) Missing transverse momentum (d) All channels

Why top?

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings

compared: mass drop

Separating signal and

background in $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

The top quark cross section is large at LHC energies, one event in 10^6

Since $m_t > M_W + m_b$ a top quark decays predominantly into a b quark and an on-shell W boson

 $\begin{array}{rccc} t & \rightarrow & W^+ + b \\ & & \downarrow \\ & l^+ + \nu \\ t & \rightarrow & W^+ + b \\ & & \downarrow \\ & q + \bar{q} \end{array}$

In the limit $m_t \gg M_W$ the result for the total width is

$$\Gamma(t \to bW) = \frac{G_F m_t^3}{8\pi\sqrt{2}} |V_{tb}|^2 \approx 1.76 \text{ GeV} \left(\frac{m_t}{175 \text{ GeV}}\right)^3$$

 $V_{tb} \approx 1$ as suggested by the unitarity relation $|V_{tb}|^2 + |V_{cb}|^2 + |V_{ub}|^2 = 1$. The top quark decays before it has time to hadronize.

The top is a copious source of b's and W's

LO Top production

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop

Separating signal and

background in

 $VH(\rightarrow b\overline{b})$

```
Higgs tagging-filtering
```

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

The leading-order processes for the production of a heavy quark Q of mass m in hadron-hadron collisions

 $\begin{array}{ll} (a) & q(p_1) + \overline{q}(p_2) \to Q(p_3) + \overline{Q}(p_4) \\ (b) & g(p_1) + g(p_2) \to Q(p_3) + \overline{Q}(p_4) \end{array}$

where the four-momenta of the partons are given in brackets ($\rho=4m^2/s).$

Process	$\overline{\sum} \mathcal{M} ^2/g^4$
$q \ \overline{q} \to Q \ \overline{Q}$	$\frac{4}{9}\left(au_{1}^{2}+ au_{2}^{2}+rac{ ho}{2} ight)$
$g \ g \to Q \ \overline{Q}$	$\left(\frac{1}{6\tau_{1}\tau_{2}} - \frac{3}{8}\right)\left(\tau_{1}^{2} + \tau_{2}^{2} + \rho - \frac{\rho^{2}}{4\tau_{1}\tau_{2}}\right)$

The matrix elements squared have been averaged (summed) over initial (final) colours and spins, as indicated by $\overline{\sum}$.

We have introduced the following notation for the ratios of scalar products:

$$\tau_1 = \frac{2p_1 \cdot p_3}{\hat{s}}, \quad \tau_2 = \frac{2p_2 \cdot p_3}{\hat{s}}, \quad \rho = \frac{4m^2}{\hat{s}}, \quad \hat{s} = (p_1 + p_2)^2.$$

Differential distributions

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop

Separating signal and

background in

 $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

The short-distance cross section is obtained from the invariant matrix element in the usual way:

$$d\hat{\sigma}_{ij} = \frac{1}{2\hat{s}} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \overline{\sum} |\mathcal{M}_{ij}|^2.$$

The first factor is the flux factor for massless incoming particles. The other terms come from the phase space for $2 \rightarrow 2$ scattering.

In terms of the rapidity $y = \frac{1}{2} \ln((E + p_z)/(E - p_z))$ and transverse momentum, p_T , the relativistically invariant phase space volume element of the final-state heavy quarks is

$$\frac{d^3p}{E} = dy \ d^2p_T \ .$$

The result for the invariant cross section may be written as

$$\frac{d\sigma}{dy_3 dy_4 d^2 p_T} = \frac{1}{16\pi^2 \hat{s}^2} \sum_{ij} x_1 f_i(x_1, \mu^2) x_2 f_j(x_2, \mu^2) \overline{\sum} |\mathcal{M}_{ij}|^2.$$

 x_1 and x_2 are fixed if we know the transverse momenta and rapidity of the outgoing heavy quarks.

Differential distributions

Ingredients for a parton calculation Parton luminosity Jet physics Jet algorithms Branching kinematics Higgs and QCD branchings compared: angular separation Higgs and QCD branchings compared: mass drop Separating signal and background in $VH(\rightarrow b\bar{b})$ Higgs tagging-filtering Why top? LO Top production NLO Heavy quark production Scale dependence NNLO Top @NNLO NNLO top Recap

Bibliography

In the centre-of-mass system of the incoming hadrons we may write

$$p_{1} = \frac{1}{2}\sqrt{s}(x_{1}, 0, 0, x_{1})$$

$$p_{2} = \frac{1}{2}\sqrt{s}(x_{2}, 0, 0, -x_{2})$$

$$p_{3} = (m_{T} \cosh y_{3}, p_{T}, 0, m_{T} \sinh y_{3})$$

$$p_{4} = (m_{T} \cosh y_{4}, -p_{T}, 0, m_{T} \sinh y_{4}).$$

Applying energy and momentum conservation, we obtain

$$x_{1} = \frac{m_{T}}{\sqrt{s}} (e^{y_{3}} + e^{y_{4}})$$

$$x_{2} = \frac{m_{T}}{\sqrt{s}} (e^{-y_{3}} + e^{-y_{4}})$$

$$\hat{s} = 2m_{T}^{2} (1 + \cosh \Delta y).$$

The quantity $m_T = \sqrt{(m^2 + p_T^2)}$ is the transverse mass of the heavy quarks and $\Delta y = y_3 - y_4$ is the rapidity difference between them.

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings

compared: mass drop

Separating signal and

background in

 $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

In these variables the leading order cross section is

$$\frac{d\sigma}{dy_3 dy_4 d^2 p_T} = \frac{1}{64\pi^2 m_T^4 (1 + \cosh(\Delta y))^2} \\ \times \sum_{ij} x_1 f_i(x_1, \mu^2) x_2 f_j(x_2, \mu^2) \overline{\sum} |\mathcal{M}_{ij}|^2.$$

Expressed in terms of m, m_T and Δy , the matrix elements for the two processes are

$$\overline{\sum} |\mathcal{M}_{q\overline{q}}|^2 = \frac{4g^4}{9} \left(\frac{1}{1 + \cosh(\Delta y)} \right) \left(\cosh(\Delta y) + \frac{m^2}{m_T^2} \right),$$

$$\overline{\sum} |\mathcal{M}_{gg}|^2 = \frac{g^4}{24} \Big(\frac{8 \cosh(\Delta y) - 1}{1 + \cosh(\Delta y)} \Big) \Big(\cosh(\Delta y) + 2 \frac{m^2}{m_T^2} - 2 \frac{m^4}{m_T^4} \Big).$$

As the rapidity separation Δy between the two heavy quarks becomes large

$$\overline{\sum} |\mathcal{M}_{q\overline{q}}|^2 \sim \text{ constant}, \quad \overline{\sum} |\mathcal{M}_{gg}|^2 \sim \exp \Delta y \;.$$

The cross section is damped at large Δy and heavy quarks produced by $q\bar{q}$ annihilation are more closely correlated in rapidity those produced by gg fusion.

Applicability of perturbation theory?

Consider the propagators in the diagrams.

$$(p_1 + p_2)^2 = 2p_1 p_2 = 2m_T^2 (1 + \cosh \Delta y) ,$$

$$(p_1 - p_3)^2 - m^2 = -2p_1 p_3 = -m_T^2 (1 + e^{-\Delta y}) ,$$

$$(p_2 - p_3)^2 - m^2 = -2p_2 p_3 = -m_T^2 (1 + e^{\Delta y}) .$$

Note that the propagators are all off-shell by a quantity of least of order m^2 .

- Thus for a sufficiently heavy quark we expect the methods of perturbation theory to be applicable. It is the mass m (which by supposition is very much larger than the scale of the strong interactions Λ) which provides the large scale in heavy quark production. We expect corrections of order Λ/m
- This does not address the issue of whether the charm or bottom mass is large enough to be adequately described by perturbation theory.

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop Separating signal and background in

 $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

NLO Heavy quark production

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop

Separating signal and

background in $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

In NLO heavy quark production m is the heavy quark mass.

$$\sigma(S) = \sum_{i,j} \int dx_1 dx_2 \,\hat{\sigma}_{ij}(x_1 x_2 S, m^2, \mu^2) F_i(x_1, \mu^2) F_j(x_2, \mu^2)$$

$$\hat{\sigma}_{i,j}(\hat{s},m^2,\mu^2) = \sigma_0 c_{ij}(\hat{\rho},\mu^2)$$

where $\hat{\rho} = 4m^2/\hat{s}$, $\bar{\mu}^2 = \mu^2/m^2$, $\sigma_0 = \alpha_s^2(\mu^2)/m^2$ and \hat{s} in the parton total c-of-m energy squared. The coupling satisfies

$$\frac{d\alpha_{\rm s}}{d\ln\mu^2} = -b_0 \frac{\alpha_{\rm s}^2}{2\pi} + O(\alpha_{\rm s}^3), \ b_0 = \frac{11N - 2n_f}{6}$$

$$c_{ij}\left(\rho,\frac{\mu^2}{m^2}\right) = c_{ij}^{(0)}(\rho) + 4\pi\alpha_{\rm S}(\mu^2) \left[c_{ij}^{(1)}(\rho) + \overline{c}_{ij}^{(1)}(\rho)\ln(\frac{\mu^2}{m^2})\right] + O(\alpha_{\rm S}^2)$$

The lowest-order functions $c_{ij}^{(0)}$ are obtained by integrating the lowest order matrix elements

$$c_{q\overline{q}}^{(0)}(\rho) = \frac{\pi\beta\rho}{27} \left[(2+\rho) \right], \quad c_{gq}^{(0)}(\rho) = c_{g\overline{q}}^{(0)}(\rho) = 0 ,$$
$$c_{gg}^{(0)}(\rho) = \frac{\pi\beta\rho}{192} \left[\frac{1}{\beta} \left[\rho^2 + 16\rho + 16 \right] \ln\left(\frac{1+\beta}{1-\beta}\right) - 28 - 31\rho \right] ,$$

NLO Heavy quark production

Ingredients for a parton calculation Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop

Separating signal and

background in

 $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

The functions $c_{ij}^{(1)}$ are also known In order to calculate the c_{ij} in perturbation theory we must perform both renormalization and factorization of mass singularities. The subtractions required for renormalization and factorization are done at mass scale μ .

Virtual emission diagrams

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings compared: mass drop Separating signal and

background in

 $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

 μ is an unphysical parameter. The physical predictions should be invariant under changes of μ at the appropriate order in perturbation theory. If we have performed a calculation to $O(\alpha_s^3)$, variations of the scale μ will lead to corrections of $O(\alpha_s^4)$,

$$\mu^2 \frac{d}{d\mu^2} \sigma = O(\alpha_{\rm S}^4).$$

The term $\overline{c}^{(1)}$, which controls the μ dependence of the higher-order perturbative contributions, is fixed in terms of the lower-order result $c^{(0)}$:

$$\overline{c}_{ij}^{(1)}(\rho) = \frac{1}{8\pi^2} \left[4\pi b c_{ij}^{(0)}(\rho) - \int_{\rho}^{1} dz_1 \sum_{k} c_{kj}^{(0)}(\frac{\rho}{z_1}) P_{ki}^{(0)}(z_1) - \int_{\rho}^{1} dz_2 \sum_{k} c_{ik}^{(0)}(\frac{\rho}{z_2}) P_{kj}^{(0)}(z_2) \right].$$

Scale dependence

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings

compared: mass drop

Separating signal and

background in $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

In obtaining this result we have used the renormalization group equation for the running coupling

$$\mu^2 \frac{d}{d\mu^2} \alpha_{\rm S}(\mu^2) = -b\alpha_{\rm S}^2 + \dots$$

and the lowest-order form of the DGLAP equation

$$\mu^2 \frac{d}{d\mu^2} f_i(x,\mu^2) = \frac{\alpha_{\rm s}(\mu^2)}{2\pi} \sum_k \int_x^1 \frac{dz}{z} P_{ik}^{(0)}(z) f_k(\frac{x}{z},\mu^2) + \dots$$

Scale dependence

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings compared: angular

separation

```
Higgs and QCD branchings compared: mass drop
```

Separating signal and

background in

 $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

- This illustrates an important point which is a general feature of renormalization group improved perturbation series in QCD.
- The coefficient of the perturbative correction depends on the choice made for the scale μ , but the scale dependence changes the result in such a way that the physical result is independent of that choice.
- Thus the scale dependence is formally small because it is of higher order in α_s .
- This does not assure us that the scale dependence is actually *numerically* small for all series.
- A pronounced dependence on the scale μ is a signal of an untrustworthy perturbation series.

Scale dependence of top cross section

Bibliography

■ Note that despite the fact that \$\alpha_S\$ is of order \$10\%\$, we do not obtain \$10\%\$ predictions at NLO.
 ■ This is 'feature' of renormalization group improved perturbation theory.

NNLO

NNLO top

Bibliography

Recap

as before in the NLO calculations, tension between the need to cancel infra-red divergences, which for the higher multiplicity processes are only manifest after integration and the desire to have a fully differential prediction. Ingredients for a parton calculation Parton luminosity Jet physics Jet algorithms Branching kinematics Higgs and QCD branchings compared: angular separation Higgs and QCD branchings compared: mass drop Separating signal and background in $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

Collider	$\sigma_{ m tot}$ [pb]	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8\%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	$+16.2(1.7\%) \\ -17.8(1.9\%)$

 Table 1: Best NNLO+NNLL theoretical predictions for various colliders and c.m. energies.

• c.f. scale uncertainty at NLO +12% - 26%

arXiv:1303.6254

32 / 36

Ingredients for a parton calculation Parton luminosity Jet physics Jet algorithms

Branching kinematics

Higgs and QCD branchings compared: angular

separation

Higgs and QCD branchings compared: mass drop Separating signal and

background in

 $VH(\rightarrow b\overline{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

Current status of NNLO calculations

dijets	gluon-gluon	PDFs,strong couplings,BSM	1407.5558
H+0jet	fully inclusive N3LO	Higgs couplings	1503.06056
H+1jet	fully exclusive	Higgs couplings, probing GGH vertex	1408.5325,1504.07922,1505.03893
tt pair	fully exclusive, stable tops	mass,pt, FB asymmetry,PDFs BSM	1601.05375
single top	fully exclusive, stable tops, t-channel	V_{tb} ,width, PDfs	1404.7116
WBF	exclusive VBF cuts	Higgs couplings	1506.02660
W + j	fully exclusive, decays	PDFs	1504.02131
Z + j	decay, off-shell effects	PDFs	1601.04569,1507.20850,1507.02850
ZH	decays to bb at NLO	Higgs couplings	1407.4747,1601.00658
WH	fully exclusive	Higgs couplings	1312.1669, 1601.00658
ZZ	fully exclusive, off-shell	trilinear gauge couplings,BSM	1405.2219, 1507.06257
WW	fully inclusive	trilinear gauge couplings,BSM	1408.5243
$W\gamma,Z\gamma$	fully exclusive	trilinear gauge couplings,BSM	1601.06751
$\gamma \gamma$	fully differential	Background studies	1110.2375,1603.02663
top decay	exclusive	Top couplings	1301.7133
H - bb	exclusive, massless	Higgs couplings boosted	1110.2368

NNLO top

Ingredients for a parton calculation

Parton luminosity

Jet physics

Jet algorithms

Branching kinematics

Higgs and QCD branchings

compared: angular

separation

Higgs and QCD branchings

compared: mass drop

Separating signal and background in

 $VH(\rightarrow b\bar{b})$

Higgs tagging-filtering

Why top?

LO Top production

NLO Heavy quark production

Scale dependence

NNLO

Top @NNLO

NNLO top

Recap

Bibliography

to undertake a number of high-calibre phenomenological LHC analyses. Some examples are:

- validation of different implementations of higher-order effects in MC event generators,
- extraction of NNLO PDFs from LHC data, (especially the gluon distribution).
- improved determination of the top-quark mass
- direct measurement of the running of α_S at high scales.
- better control over background for BSM searches

Ingredients for a parton calculation
Parton luminosity
Jet physics
Jet algorithms
Branching kinematics Higgs and QCD branchings compared: angular separation Higgs and QCD branchings compared: mass drop Separating signal and
background in $VH(\rightarrow b\bar{b})$
Higgs tagging-filtering
Why top?
LO Top production
NLO Heavy quark production
Scale dependence
NNLO
Top @NNLO
NNLO top
Recap
Bibliography

~~**IP**³~~

- Jets are visible to the naked eye, but to use them we need a jet definition.
- Two classes of jet algorithms
- Top cross section is big; it is important to understand both as a background and as a signal
- NNLO corrections to a few processes (including top production) are becoming known.

Bibliography

Ingredients	for	а	parton	
calculation				

- Parton luminosity
- Jet physics
- Jet algorithms
- Branching kinematics
- Higgs and QCD branchings
- compared: angular
- separation
- Higgs and QCD branchings compared: mass drop Separating signal and
- background in
- $VH(\rightarrow b\overline{b})$
- Higgs tagging-filtering
- Why top?
- LO Top production
- NLO Heavy quark production
- Scale dependence
- NNLO
- Top @NNLO
- NNLO top
- Recap
- Bibliography

- R. K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics (Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology)
- J. Shelton, "Jet Substructure," doi:10.1142/9789814525220_0007 arXiv:1302.0260 [hep-ph].
- G. P. Salam, "Towards Jetography," Eur. Phys. J. C 67, 637 (2010) doi:10.1140/epjc/s10052-010-1314-6 [arXiv:0906.1833 [hep-ph]].
- M. Cacciari, G. P. Salam and G. Soyez, "The Anti-k(t) jet clustering algorithm," JHEP 0804, 063 (2008) doi:10.1088/1126-6708/2008/04/063 [arXiv:0802.1189 [hep-ph]].
- J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, "Jet substructure as a new Higgs search channel at the LHC," Phys. Rev. Lett. 100, 242001 (2008) doi:10.1103/PhysRevLett.100.242001 [arXiv:0802.2470 [hep-ph]].
- P. Nason, S. Dawson and R. K. Ellis, "The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions," Nucl. Phys. B 303, 607 (1988). doi:10.1016/0550-3213(88)90422-1
- M. Czakon, P. Fiedler and A. Mitov, "Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through $O(\alpha_S^4)$," Phys. Rev. Lett. **110**, 252004 (2013) doi:10.1103/PhysRevLett.110.252004 [arXiv:1303.6254 [hep-ph]].