Higgs Theory Scott Thomas

Lecture 2

Higgs Boson Decays

Couples and Decays most strongly to heaviest SM particle kinematically available $m_h \simeq 125 \text{ GeV}$

Two-Body: $h \rightarrow bb, cc, \tau\tau, \cdots, gg, \gamma\gamma$

$$\Gamma(h
ightarrow bb) \simeq rac{3m_b^2m_h}{8\pi v^2} \simeq 2.5 \,\, {
m MeV}$$

 $m_b/v \simeq 1.0 imes 10^{-2}$ small coupling - Higgs Vary Narrow State

$$\frac{\Gamma(h \to gg, \gamma\gamma)}{\Gamma(h \to bb)} \simeq \frac{\alpha^2 m_h^2}{16\pi^2 m_b^2} \sim 10^{-1}, 10^{-3}$$

Three-Body: $h \to WW^*, ZZ^* \to W\ell\nu, Z\ell\ell, \cdots$

$$\frac{\Gamma(h \to WW^* \to W\ell\nu)}{\Gamma(h \to bb)} \simeq \frac{g^2 m_W^4}{16\pi^2 m_b^2 m_h^2} \sim 1$$

 $\Gamma(h
ightarrow AII) \simeq 4.1 \,\, {
m MeV}$

 $m_h \simeq 125 \,\, {
m GeV}$

 $Br(h \to X)$

bb0.58 0.21 WW^* 0.086 gg0.063 au au0.029 CC ZZ^* ($\ell\ell\ell\ell$) 0.026 (1.2×10^{-4}) $2.3 imes 10^{-3}$ $\gamma\gamma$ $Z\gamma$ ($\ell\ell\gamma$) 1.5 × 10⁻³ (1.0 × 10⁻⁴) 2.2×10^{-4}

Resonant EM final state

 $\mu\mu$

Higgs Boson Production LHC

 $\sigma(pp \to \text{final})$ is a convolution of $\sigma(\xi_1 \xi_2 \to \text{final})$ with ξ_i parton distribution functions $f_i(x)$ $x = p_{\xi}^{\mu}/p_p^{\mu}$

$$\sigma(pp \to \text{final} | s_{pp}) = \int_0^1 dx \int_0^1 dy \ f_1(x) \ f_2(y) \ \sigma(\xi_1 \xi_2 \to \text{final} | s_{\xi_1 \xi_2})$$
$$= \int_{\tau_{\min}}^1 d\tau \int_{\tau}^1 \frac{dx}{x} \ f_1(x) \ f_2(\tau/x) \ \sigma(\xi_1 \xi_2 \to \text{final} | \tau s_{pp})$$

 $\tau_{\min} = m_{\text{final}}^2 / s_{pp}$ $m_{\text{final}} = \sum_i m_i$ $i = 1, \cdots, N_{\text{final}}$

Higgs Boson Production LHC

Gluon Fusion ggF

$$\sigma(gg \to h) \simeq \frac{\alpha_s^2 m_h^2}{4\pi v^2} \, \delta(s_{gg} - m_h^2)$$

$$\sigma(pp \to gg \to h) \simeq \frac{\alpha_s^2}{4\pi v^2} f(s_{pp}/m_h^2) \quad f(x) \sim \ln x$$

Vector Boson Fusion VBF

$$\int_{q}^{\bar{q}'} \int_{H}^{\bar{q}'} \sigma(pp \to qq WW^* \to qq h) \simeq \frac{\alpha_W^2 m_W^4}{4\pi m_h^4 v^2} \ln^2(s_{pp}/m_W^2)$$

Associated Vector Boson Production Wh, Zh

$$\sigma(pp \to Wh, Zh) \simeq \frac{\alpha_W m_W^4}{m_h^4 v^2}$$

5

Associated Top Quark Production tth

Associated Bottom Quark Production bbh

$$\sigma(pp \rightarrow b\overline{b}\,h) \simeq rac{lpha_s^2\,m_b^2}{4\pi\,m_h^2\,v^2}\,\ln^2(s_{pp}/m_b^2)$$

 $m_h \simeq 125 \text{ GeV} \qquad \sqrt{s_{pp}} = 13 \text{ TeV}$

 $\sigma(pp \rightarrow h)$ (fb)

ggF	43900	
VBF	3750	
Wh	1380	
Zh	870	
tth	510	
bbh	510	

 $\operatorname{Rate}(pp \to h) \simeq \mathcal{O}(10^6) \ / \ 20 \ \mathrm{fb}^{-1}$

Number of Channels Observed + Measured

Many Many More Eventually ...

	Inclusive	VBF	Vh	tth
γγ	X	×	X	X
ZZ*	X	Х	Х	X
WW*	X	X	X	X
ττ	X	X	X	X
bb			X	X
Ζγ	Х	X	Х	
μμ	Х	Х	Х	Х

 σ .Br (Initial -> h -> Final)

Discovery

🔵 Run 1

X Run 2, 3 +

Higgs is Window into EWSB Sector

Signals of New Physics in SM Higgs Rate Measurements

Deviations in SM Higgs Couplings

- Fit to SM Couplings

.....

- Effective Operator Analysis
- Specific Underlying Theoretical Framework

Extended Higgs Sector Supersymmetry σ.Br (Initial -> h -> Final)

Any Deviations at Discovery Level are by Definition Large ...

New Tests of Standard Model - Higgs Sector

σ.Br (Initial -> h -> Final)

It's the Higgs Boson!

Precision Probes of New Electroweak Physics

```
Electroweak Observables G_{F}, m_{W}, m_{Z}, \Gamma_{Z}, A_{Z-FB}, ...
```

Renormalizable SM + D=6 Operators $H = \langle H \rangle$ $\frac{\xi_T}{M^2} (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H)$ $\frac{g_1g_2\xi_{S_{12}}}{M^2} H^{\dagger}W_{\mu\nu}H B^{\mu\nu}$ PDG

S = 0.01 +- 0.10 $M^2/\xi_{12} > (3.9 \text{ TeV})^2$ T = 0.03 +- 0.11

Systematics: m_t , $ln(m_h)$, α_s ,

 ξ_{12} / M² = S₁₂ / 8 π v²

Precision Electroweak Physics Through the Higgs

Precision Electroweak Physics Through the Higgs

Precision Electroweak Physics Through the Higgs

(MSSM)				
	2HDM I	2HDM II	2HDM III	2HDM IV
\boldsymbol{u}	Φ_2	Φ_2	Φ_2	Φ_2
d	Φ_2	Φ_1	Φ_2	Φ_1
e	Φ_2	Φ_1	Φ_1	Φ_2

	2HDM I	2HDM II	2HDM III	2HDM IV
hVV	$\sin(eta-lpha)$	$\sin(eta-lpha)$	$\sin(eta-lpha)$	$\sin(eta-lpha)$
hQu	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
hQd	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$
hLe	$\cos lpha / \sin eta$	$-\sinlpha/\coseta$	$-\sinlpha/\coseta$	$\cos lpha / \sin eta$
HVV	$\cos(eta-lpha)$	$\cos(eta-lpha)$	$\cos(eta-lpha)$	$\cos(eta-lpha)$
HQu	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$
HQd	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$
HLe	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$
AVV	0	0	0	0
AQu	$\cot eta$	\coteta	\coteta	\coteta
AQd	$-\cot \beta$	aneta	$-\cot \beta$	aneta
ALe	$-\cot \beta$	aneta	$\tan \beta$	$-\coteta$

Two Higgs Doublets hH mix		
h-H mix		
Large modifications of h couplings Possible		
Four Discrete Two Doublet Models that Satisfy Glashow-Weinberg Condition		
Two Parameters, α , β		
$ aneta\equiv \langle\Phi_2^0 angle/\langle\Phi_1^0 angle $		
$\begin{pmatrix} \sqrt{2} \operatorname{Re}(\Phi_2^0) - v_2 \\ \sqrt{2} \operatorname{Re}(\Phi_1^0) - v_1 \end{pmatrix} = \begin{pmatrix} \cos \alpha \ \sin \alpha \\ -\sin \alpha \ \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$		
Four couplings		

		(MSSM)		
	2HDM I	2HDM II	2HDM III	2HDM IV
\boldsymbol{u}	Φ_2	Φ_2	Φ_2	Φ_2
d	Φ_2	Φ_1	Φ_2	Φ_1
e	Φ_2	Φ_1	Φ_1	Φ_2

	2HDM I	2HDM II	2HDM III	2HDM IV
hVV	$\sin(eta-lpha)$	$\sin(eta-lpha)$	$\sin(eta-lpha)$	$\sin(eta-lpha)$
hQu	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$
hQd	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$
hLe	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$
HVV	$\cos(eta-lpha)$	$\cos(eta-lpha)$	$\cos(eta-lpha)$	$\cos(eta-lpha)$
HQu	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$
HQd	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$
HLe	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$
AVV	0	0	0	0
AQu	$\cot eta$	\coteta	\coteta	\coteta
AQd	$-\cot \beta$	aneta	$-\cot \beta$	aneta
ALe	$-\cot eta$	aneta	aneta	$-\coteta$

Alignment Limit:

- h mass Eigenstate || Expectation Values $\cos(\beta \alpha) = 0$
- h couplings = h_{SM} couplings

Two Higgs Doublets h-H mix

Two Higgs Doublets h H mix

Two Higgs Doublets hH mix

```
Experimentally:
```

h Couplings ~ h_{SM} Couplings

Theoretically for 2HDM Implies:

Type I - Close to Alignment Limit Type II - <u>Very</u> Close to Alignment Limit

Implications for Proximity to Decoupling Limit - (Model Dependent)

Implications for A,H,H+- Couplings Direct Searches ...

Direct Searches for 2nd Higgs Doublet

Two Higgs Doublets h, A, H, H+-

[Production	Decay
ĺ	$gg \rightarrow h$	$h \rightarrow 4\ell$
	$VBF \rightarrow h$	$h ightarrow 4\ell$
h/A/H+-/H :	$gg \rightarrow H$	$H ightarrow 4\ell$
		$H \rightarrow hh \rightarrow 4W, WW \tau \tau, 4\tau, ZZ b \overline{b}, ZZWW, 4Z, ZZ \tau \tau$
		$H \rightarrow AA \rightarrow 4\tau$
125/230/230/500 GeV		$H \to AA \to \tau \tau Zh \to \tau \tau ZWW, \tau \tau Z \tau \tau, \tau \tau Zb\bar{b}, \tau \tau ZZZ$
		$H \rightarrow AA \rightarrow ZhZh \rightarrow ZZWWWW, ZZWW\tau\tau, ZZWWb\bar{b}, ZZ\tau\tau b\bar{b}, ZZ\tau\tau \tau \tau$
(105 Signal Tanalagias)		$H \rightarrow AA \rightarrow ZhZh \rightarrow ZZb\bar{b}b\bar{b}, ZZZZb\bar{b}, ZZZZ\tau\tau, ZZZZWW, ZZZZZZZZZZZZZZZZZZZZZZ$
(105 Signal Topologies)		$H \rightarrow H^+H^- \rightarrow WhWh \rightarrow WWWWWW, WWWW \tau\tau, WWWWb\bar{b}, WW\tau\tau\tau\tau$
		$H \rightarrow H^+H^- \rightarrow WhWh \rightarrow WW\tau\tau b\bar{b}, WWZZb\bar{b}, WWWWZZ, WWZZZZ, WWZZ\tau\tau$
		$H \rightarrow H^+H^- \rightarrow \tau \nu Wh \rightarrow \tau \nu WWW, \tau \nu W\tau \tau, \tau \nu WZZ$
		$H \rightarrow H^+H^- \rightarrow tbWh \rightarrow tbWWW, tbW\tau\tau, tbWZZ$
		$H \to ZA \to Z\tau\tau$
		$H \rightarrow ZA \rightarrow ZZh \rightarrow ZZ\tau\tau, ZZWW, ZZb\overline{b}, ZZZZ$
	$VBF \rightarrow H$	$H \rightarrow 4\ell$
		$H \rightarrow hh \rightarrow 4W, WW\tau\tau, 4\tau, ZZb\bar{b}, ZZWW, 4Z, ZZ\tau\tau$
		$H \rightarrow AA \rightarrow 4\tau$
		$H \to AA \to \tau \tau Zh \to \tau \tau ZWW, \tau \tau Z\tau \tau, \tau \tau Zb\bar{b}, \tau \tau ZZZ$
		$H \rightarrow AA \rightarrow ZhZh \rightarrow ZZWWWW, ZZWW\tau\tau, ZZWWb\bar{b}, ZZ\tau\tau b\bar{b}, ZZ\tau\tau \tau \tau$
		$H \rightarrow AA \rightarrow ZhZh \rightarrow ZZb\bar{b}b\bar{b}, ZZZZb\bar{b}, ZZZZ\tau\tau, ZZZZWW, ZZZZZZZZZZZZZZZZZZZZZZ$
		$H \rightarrow H^+H^- \rightarrow WhWh \rightarrow WWWWWW, WWWW \tau \tau, WWWW b\bar{b}, WW \tau \tau \tau \tau$
		$H \rightarrow H^+H^- \rightarrow WhWh \rightarrow WW\tau\tau b\bar{b}, WWZZb\bar{b}, WWWWZZ, WWZZZZ, WWZZ\tau\tau$
		$H \to H^+ H^- \to \tau \nu W h \to \tau \nu W W W, \tau \nu W \tau \tau, \tau \nu W Z Z$
		$H \rightarrow H^+H^- \rightarrow tbWh \rightarrow tbWWW, tbW\tau\tau, tbWZZ$
		$H \rightarrow ZA \rightarrow Z\tau\tau$
		$H \rightarrow ZA \rightarrow ZZh \rightarrow ZZ\tau\tau, ZZWW, ZZb\overline{b}, ZZZZ$
	$gg \rightarrow A$	$A \rightarrow Zh \rightarrow ZWW, Z\tau\tau, ZZZ$
	$q\bar{q} \rightarrow Wh$	$Wh \rightarrow WWW, W\tau\tau, WZZ$
	$q\bar{q} \rightarrow Zh$	$Zh \rightarrow ZWW, Z au au, ZZZ$
	$t\bar{t}h$	$t\bar{t}h ightarrow t\bar{t}WW, t\bar{t} au au, t\bar{t}ZZ$
	$t\bar{t}A$	$t\bar{t}A \rightarrow t\bar{t}\tau\tau$
		$t\bar{t}A \rightarrow t\bar{t}Zh \rightarrow t\bar{t}ZWW, t\bar{t}Z\tau\tau, t\bar{t}Zb\bar{b}, t\bar{t}ZZZ$

Direct Searches for 2nd Higgs Doublet

Two Higgs Doublets h, A, H, H⁺⁻

Consider Spectrum:

 $m_A \sim m_H \sim m_{H^{+-}} \gg m_h$

Splittings < $O(m_W^2 / m_A)$

Hierarchy of heavy Higgs leading LHC production channels that do <u>not</u> vanish in the 2HDM alignment limit

Single Heavy Higgs Strong Production

Single Heavy Higgs Associated Strong Production

Single Heavy Higgs Associated Weak Production

> Double Heavy Higgs Weak Production

Light + Heavy Higgs Strong Production

Double Heavy Higgs Strong Production

$$\mathcal{O}(g_s^4 \lambda_f^2) \quad gg \to H , A$$

 $\mathcal{O}(g_s^4 \lambda_f^2) \quad gg \to bbH , bbA , tbH^{\pm} \ ttH , ttA$

 $\mathcal{O}(g_s^2 g_w^4 \lambda_f^2) \quad qg \to bq' bH^{\pm} , bq tH$ bq tA

$$\mathcal{O}(g_w^4) \qquad q\bar{q} \to HA, HH^{\pm} \\ AH^{\pm}, H^{+}H^{-}$$

 $\mathcal{O}(g_s^4 \lambda_f^4) \quad gg \to hH, hA$

 $\mathcal{O}(g_s^4 \lambda_f^4) \quad gg \to HH, HA$ AA, H^+H^-

Standard Model decay channels of 2HDM heavy Higgs bosons

- ✓ Partial decay width approaches a Constant in alignment limit
- Partial decay width Vanishes in the alignment limit

Direct Searches for 2nd Higgs Doublet

Two Higgs Doublets $h(A, H) H^{+-}$ gg -> H -> hh , gg -> A -> Zh

Direct Searches for 2nd Higgs Doublet

Two Higgs Doublets h, AH, H+gg -> A -> Zh

Using Higgs -> $\gamma\gamma$ to Discover New Physics

Use 125 GeV Higgs as Calibration to Search for New Physics

h -> γγ + X (Least Rare of the Resonant Decay Modes) On-Resonance + Upper and Lower Side Bands Even Blunt Variables Suffice + More focused + ...

Using Higgs -> $\gamma\gamma$ to Discover New Physics

Use 125 GeV Higgs as Calibration to Search for New Physics

h -> γγ + (Least Rare of the Resonant Decay Modes) On-Resonance + Upper and Lower Side Bands Even Blunt Variables Suffice + More focused + ... Events / 50 GeV / 15 fb⁻¹ 8 TeV 15 fb⁻¹ Natural Higgsino NLSP Pheno Study **On Resonance** Stop Pair Production 250 GeV with stop -> b + Higgsino and Higgsino -> h + Goldstino 10 Many other Examples Side Band More Focused -> 200 300 400 500 600 700 800 900 100 S_T (GeV) X = Multi-Channel Analysis Blue = Side Band Background Red = On Resonance SM Higgs +

39

Background + Stop -> h + X

Higgs Boson Decay to Dark Matter

If the Dark Matter particle gets some of its mass from Higgs Condensate - it couples to the Higgs Boson

(Low Energy (Soft) Higgs Theorem)

Bino-Like Neutralino Dark Matter

$$-\frac{1}{2}m_{\chi}\chi\chi \qquad m_{\chi}\simeq m_{1}-\frac{m_{Z}^{2}\sin^{2}\theta \ (m_{1}+\mu^{*}\sin 2\beta)}{|\mu|^{2}-|m_{1}|^{2}}+\cdots$$

Higgs- χ - χ Coupling

So

$$\begin{aligned} -\frac{1}{2} \frac{\partial m_{\chi}}{\partial m_{Z}} \frac{\partial m_{Z}}{\partial v} h \, \chi \chi &= -\frac{1}{2} \, m_{Z} \, \frac{\partial m_{\chi}}{\partial m_{Z}} \frac{h}{v} \, \chi \chi \\ &= \frac{m_{Z}^{2} \sin^{2} \theta \, \left(m_{1} + \mu^{*} \sin 2\beta\right)}{|\mu|^{2} - |m_{1}|^{2}} \, \frac{h}{v} \, \chi \chi + \cdots \\ \Gamma(h \to \chi \chi) \neq 0 \quad \text{if} \quad m_{\chi} < m_{h}/2 \end{aligned}$$

Dilutes All Higgs \rightarrow SM Branching Ratios

Dark Matter - Nucleon Coupling

In light quark chiral (massless) limit $m_n = C \Lambda_{QCD}$

$$\Lambda_{\rm QCD} = \mu \, \exp\left(-\int \frac{d(1/g^2)}{\beta_{1/g^2}}\right) \simeq \mu' \, \exp\left(-\frac{8\pi^2}{b \, g^2(\mu)}\right)$$

Heavy quark thresholds (c, b, t) gain mass from EWSB \Rightarrow (Soft) Higgs couples to nucleon

$$-m_n \bar{n}n$$
 $m_n = C \Lambda_{QCD}(v)$

(Soft) Higgs - nucleon - nucleon coupling

$$-\frac{\partial m_n}{\partial v}h\,\bar{n}n = -g_{\chi nn}\,m_n\,\frac{h}{v}\,\bar{n}n$$
$$\frac{\partial m_n}{\partial v} \simeq -m_n\,\frac{8\pi^2}{b_L}\,\frac{\partial}{\partial v}\frac{1}{g^2(m_Q)} = -m_n\,\frac{8\pi^2}{b_L}\,\frac{\Delta b}{8\pi^2}\,\frac{1}{v} = \frac{\Delta b}{b_L}\,\frac{m_n}{v} = \frac{2}{9}\,\frac{m_n}{v}$$

So Dark Matter couples to nucleons through *s*-channel Higgs

Physics of the Higgs Sector Responsible for Electroweak Symmetry Breaking is the <u>Only</u> Physics that is <u>Guaranteed</u> to be at the Electroweak Scale

Experimental Investigation of the Higgs Sector has <u>Just</u> Begun

Still Lots of Room for New Ideas and Work - Please Join In