SppC ：超级质子对撞机

Very High Energy Hadron Colliders

Outline

Introduction

Luminosity
Magnets
High intensity beams
Machine protection
Infrastructure and injectors

High energy colliders

- (Very) high energy hadron colliders (VHEC) are generally considered to be discovery machines, for example the heaviest particles of the standard model like $\mathrm{b}, \mathrm{t}, \mathrm{Z}, \mathrm{W}$ and H were discovered by HCs . And the search is still ongoing...

N. Arkani-Hamed, FCC kickoff meeting, 2014
- With modern detector technology, (very high energy) hadron colliders can also turn into precision machines for some measurements.

High energy colliders

- In this talk I will consider as 'very high energy' everything that is higher than the LHC 7 TeV per beam.
- There are currently two VHECs - FCC-hh and SPPC - that are studied actively.
- Some past studies also meet my criteria - SSC and VLHC - and I will also mentioned them when appropriate.
- The challenges of such machine span a very wide range of topics. The following subset of aspects will be touched today:
- Magnets,
- Synchrotron radiation,
- High intensity beam dynamics,
- Injector chain,
- Machine protection,
- Civil engineering and infrastructure,
- Availability and operation.

Energy

Colliders take advantage of the Lorentz force to bend the beams, usually with a planar ring and a vertical dipole field for bending.

The momentum of a particle with charge $Z e$ in a magnetic field B :

- The LHC holds the record of magnetic field with 7.7 T (6.5 TeV) operational field (design 8.33 T and 7 TeV).
- VHECs are usually aiming at a B-field increase of a factor ~2 wrt LHC.
\square Since a factor 2 in energy (from B) is not generally considered 'insufficient', the size (ρ) is also increased.
- Notable exception of HE-LHC, the energy doubled version of LHC, to be installed in the same tunnel.

Very large colliders

Luminosity

Another key parameter for the experiments is the event rate $\mathrm{dN} / \mathrm{dt}$. For a physics process with cross-section σ it is proprotional to the collider Luminosity L:

$$
d N / d t=L \sigma \quad \begin{gathered}
\text { unit of } L: \\
1 / \text { (surface } \times \text { time })
\end{gathered}
$$

To maximize L we have to squeeze as many particles as possible into the smallest possible volume !

Hadron collider luminosity

\square The LHC is the latest in the series of the large hadron colliders after the ISR, SPS, Tevatron, HERA and RHIC.
\square The LHC pushes the luminosity frontier by a factor ~25 and the energy frontier by a factor ~7 wrt Tevatron.

Luminosity $\left[10^{30} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}\right]$
100000

Event pile-up and stored energy

\square The LHC design parameters remained rather stable over time since the 1980's, except for the luminosity (and intensity) that was pushed to $\sim 1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ to compete with SSC.
This implied an average number of collisions by bunch crossing of ~ 20 instead of 1-2 collisions that were the baseline for SSC.

- VHECs are able to produce such high luminosities that the pile-up will move into the range of 100-500: it is a huge detector challenge to be able to analyze such events and extract useful physics from them!

- Correlated to the high luminosity and beam energy, the energy stored in the beams becomes even more extreme than at LHC.
'Star wars' regime

VHEC challenges

Magnetic fields:

\square Magnet design and protection.

- Cryogenic system.

Luminosity:

- Beam dynamics (stability, vacuum effects and synchrotron radiation).
\square Stored energy (accelerator protection and beam loss control).
\square Radiation to detectors and accelerator components.
\square Event pile-up \rightarrow for the experiments.
Dimensions:
a Tunnel location.
- Infrastructure.
- Injectors.

Parameter table

- Comparison of key parameters of proposed very high energy hadron colliders.
- Please note that for some machines, there is more than one parameter set!
- Within a factor ~2 the bunch parameters are identical for all the designs > SSC.

Parameter	LHC	HE-LHC	SSC	VLHC	FCC-hh	SPPC
Circumference [km]	27.7	27.7	87.1	233	100	54
Beam energy [TeV]	7	14	20	78.5	50	36
Dipole field [T]	8.33	16	6.6	11.2	16	20
Injection energy [TeV]	0.45	0.45	2	9.8	$1-3$	2.1
Intensity / bunch [10 ${ }^{11}$ p]	1.15	2.20	0.08	0.75	1.00	2.00
No bunches	2800	2800	17424	37152	10060	5798
Intensity / beam [10 ${ }^{14}$ p]	3.2	6.2	1.3	27.9	10.6	11.5
Luminosity [1034 $\left.\mathrm{cm}^{-2} \mathbf{s}^{-1}\right]$	1	20	0.1	2	5	12
Stored beam energy [GJ]	0.36	1.38	0.42	35	8.4	6.68
Synchr. rad. power [W/m/beam]	0.18	3.2	1	4.7	30	58

FCC-hh \& SPPC are the VHECs that are currently studied in detail

Outline

Introduction
 Luminosity

Magnets
High intensity beams
Machine protection
Infrastructure and injectors

Collider luminosity

Expression for the luminosity L (for equal particle populations, Gaussian profiles and round beams) :

$$
L=\frac{k N^{2} f}{4 \pi \sigma_{x}^{*} \sigma_{y}^{*}} F=\frac{k N^{2} f \gamma}{4 \pi \beta^{*} \varepsilon} F
$$

k, N, ε : beam properties
β^{*} : property of the beam optics
F : beam dynamics

- $\quad \sigma_{x}, \sigma^{*}$: transverse rms beam sizes $-\left(\sigma^{*}\right)^{2}=\beta^{*} \varepsilon$
- $\quad \beta^{*}$: betatron (beam envelope) function \Leftrightarrow optics
- ε : beam emittance (phase space volume)
- \quad : number of particle bunches per beam.
- $\quad \mathbf{N}$: number of particles per bunch.
- \boldsymbol{f} : revolution frequency
- $\gamma=E / m$.
* refers to the IP
- F : geometric correction factor (crossing angles...).

Beam parameters

\square The intrinsic beam parameters are defined by the injectors:
$>$ Bunch spacing $(\rightarrow \mathrm{k})$: minimum (design) $=5-25 \mathrm{~ns}(\Leftrightarrow$ 1.5-7.5 m),
> Bunch intensity N: up to ~ 2×10^{11} p/bunch,
> Bunch emittance $\varepsilon: 1-3.5 \mathrm{~mm}$ mrad.

$$
L=\frac{k^{2} f \gamma}{4 \pi \beta \boxed{\varepsilon}} F
$$

\square The quality of the beam is defined in the injector chain - it is an essential component of a VHEC.
-For the LHC startup CERN has refurbished its injector chain to produce the bright LHC beams, a second upgrade wave is now in progress (to be completed in 2020) to more than double N and N / ε (brightness).
\rightarrow Presentation by M. Zerlauth (Monday)

Injectors

- A high energy collider requires a long and complex injector chain.
- Two facilities in the World that can provide TeV beams : FNAL and CERN.
- 'Green field' adds extra cost...

	Max. P $(\mathrm{GeV} / \mathrm{c})$	Length $/$ Circ. (m)
LINAC2	0.050	30
Booster	1.4	157
PS	26	628
SPS	450	$6^{\prime} 911$
LHC	$3^{\prime} 000$	$26^{\prime} 657$

FCC injector chain

Main FCC injector options:

- SPS \rightarrow LHC \rightarrow FCC
- $\mathrm{SPS} /$ SPS $_{\text {upgrade }} \rightarrow$ FCC
- SPS \rightarrow FCC booster \rightarrow FCC

Current baseline:

- Injection energy 3.3 TeV with

$L=4.0 \mathrm{~km}$
D_{-}theta $=131 \mathrm{deg}$
$D_{-} Z=110 \mathrm{~m}$ beams provided by a modified LHC.

Alternative options:

- Injection energy around 1.5 TeV.
- Compatible with: SPS upgrade , LHC, FCC booster.
- Worry for this option is the field range of > 30 in FCC: control of field errors at injection may be very tricky.

Interaction region

- VHECs operate with 2 beams in separate vacuum chambers. They beams are merged into a single vacuum chamber only around the experiments.
\square All interaction region designs are similar.
- Already the SSC interaction region was conceptually similar to the newer VHECs, except that the rings were stacked vertically as opposed to horizontally for LHC, HE-LHC, FCC-hh.

Separation / recombination dipoles

Collision point geometry

- A crossing angle between the beams is needed to minimize the electromagnetic interactions (beam-beam effects) in the common vacuum chamber (final focus region).
- Min. separation ~ 10 beam sizes.
- 30 encounters per IP at the LHC.

- Consequences of colliding at an angle:
- Significant geometric luminosity reduction that depends on beam size and bunch length: steep function of the beam size ($\beta^{*} \varepsilon=\sigma^{* 2}$).
- Reduction of the aperture.

$$
L=\frac{k N^{2} f \gamma}{4 \pi \beta^{*} \varepsilon} E
$$

Collision point focusing

The minimum beam size (or beam envelope β^{*}) is determined by:
Yo The mechanical aperture around the $I P \rightarrow$ need $\underline{\text { LARGE magnets, }}$

- The crossing angle ($\theta \propto k, N, 1 / \sqrt{ } \beta^{*}$),
$\sqrt{\circ}$ The margin to the aperture.

$$
L=\frac{k N^{2} f \gamma}{4 \pi[\beta]} F
$$

LHC example

IR design challenges - FCC-hh

Design of interaction region

- Distance from IP to first machine quadrupole $L^{*}=45 \mathrm{~m}$.
- Integrated spectrometers and compensation dipoles.
- Optics and magnet optimization for beam stay clear (aperture) and collision debris.
\checkmark Magnet lifetime should be ≥ 3 years (from radiation damage).

Event pile-up - LHC 'legacy'

- To compete with SSC, the LHC had to push the event pile-up significantly above 1-2 events per bunch crossing.
- The LHC is currently operating with a peak average event pile-up of ~ 40 events/crossing (design ~27). But statistical fluctuations generate events that have many more events.
- For the LHC luminosity upgrade HL-LHC, the number of events per crossing will be pushed to ~ 120 !
- VHECs push the limit to ~500 !!

Luminosity levelling

a VHECs (starting with LHC) enter a new regime for proton beams where synchrotron radiation is damping the beam sizes (transverse and longitudinal) of the colliding beams !
\square This can lead to a luminosity that initially increases as the damping (~ 1 hour at FCC-hh) is able to overcome the losses, providing 'free' performance gains.

- VHECs (starting with high luminosity LHC upgrade HL-LHC) will be able to provide more luminosity than the experiments can 'swallow': opens the door to levelling the luminosity with beam offsets, β^{*} etc at near constant value!

SSC luminosity evolution

storage time [hours]

Outline

Introduction
 Luminosity

Magnets

High intensity beams
Machine protection
Infrastructure and injectors

LHC legacy - 2-in-1

LHC design choices:

- High magnetic fields - 8T,
\Rightarrow super-conducting magnets
- 2 in 1 magnet design,
\Rightarrow more complex magnet design, but only one single cryostat
- Superfluid Helium.

1984

LARGE HADRON COLLIDER IN THE LEP TUNNEL

Vol. I

PROCEEDINGS OF THE ECFA-CERN WORKSHOP

Post-LHC designs are all based on the 2-in-1 concept.

The SSC designers opted for independent rings (2 separate cryostats) to be able to commission / operate one ring without the other.

From concepts to accelerator magnets

- While 8.3 T dipole magnets (LHC) have been produced by industry, there is a long road ahead to build 15-20 T accelerator grade magnets.

From many short prototypes to
\checkmark longer prototypes,
\checkmark 'hand-made' magnets (by the Labs),
\checkmark industrial production.

LBNL HD1 Nb_{3} Sn short prototype

Superconductors

$\mathrm{Nb}-\mathrm{Ti}$ is the workhorse for 4 to 10 T :

- Reaches $J \sim 2500$ A/mm² at $6 T$ and 4.2 K or at 9 T and 1.9 K .
- Well known industrial process, good mechanical properties.
- Thousands of accelerator magnets have been built.
- 10 T field in the coil is the practical limit at 1.9 K .

Courtesy E. Todesco \& G. De Rijk

$\mathrm{Nb}_{3} \mathrm{Sn}$ is the current road to 16 to 20 T

- Can reach up to $\mathrm{J} \sim 3000 \mathrm{~A} / \mathrm{mm}^{2}$ at 12 T and 4.2 K.
- Complex industrial process, higher cost, brittle and strain sensitive.
- ~25 short models for accelerator magnets have been built.
- ~20 T field in the coil is the practical limit at 1.9 K.
- Accelerator grade 11 T dipoles and high field quadrupoles in design phase for HL-LHC.

HTS materials: dreaming of 40 T (Bi-2212, YBCO)

- Current density is low, but very little dependence on the magnetic field.
- Used in solenoids, used in power lines - no accelerator magnets (only 1 model) yet.

Highest "dipole" fields

G. De Rijk - FCC week Rome

CERN RMC

Record fields for SC magnets in "dipole" configuration

Accelerator magnets are special

- Cylindrical volume with perpendicular field.
- Dipoles, quadrupoles, etc,

Artist view of a dipole, from M. N. Wilson
«Superconducting Magnets »

- Field quality: $\frac{B_{z}}{|B|} \leq f e w \cdot 10^{4} \quad \cos \Theta \operatorname{coil}: \mathrm{J}=\mathrm{J}_{0} \cos \Theta$
- Field quality formulated and measured in a multipole expansion,

$$
B_{y}+i B_{x}=10^{4} B_{1} \quad\left(b_{n}+i a_{n}\right) \frac{x+i y}{R_{\text {ref }}} \stackrel{n 1}{\vdots} \quad b_{n}, a_{n} \quad \text { few } \times \text { units }
$$

- Long dipole magnets ranging from 6 m (Tevatron) to 15 m (LHC). Often magnets are bend (9.14 mm sagitta for the LHC dipoles).

FCC-hh magnet challenges and roadmap

FCC-hh baseline: $16 \mathrm{~T} \mathrm{Nb}_{3} \mathrm{Sn}$ technology for 100 TeV in 100 km

- Develop Nb_{3} Sn-based 16 T dipole technology

- With sufficient aperture of $\sim 40 \mathrm{~mm}(\mathrm{LHC}=56 \mathrm{~mm})$ and accelerator features (field quality, ability to protect, cycling operation).
- Learn from $\mathrm{Nb}_{3} \mathrm{Sn}$ magnets in the LHC (HL-LHC 11 T dipoles).
- Technology push to achieve duplication of critical current density of $\mathrm{Nb}_{3} \mathrm{Sn}$.
- Possible goal: 16 T short dipole models by 2018 (World-wide collaboration).
- In parallel HTS development targeting 20 T
- HTS insert, generating 5 T additional field, $\sim 40 \mathrm{~mm}$ aperture and accelerator features.
- R\&D goal: demonstrate HTS/LTS technology for building magnets with a field of 20 T .

LHC incident - magnet protection

In 2008 a severe accident happened at the LHC without beam.

A magnet interconnect was defect and the electrical circuit opened. An electrical arc provoked a Helium pressure wave damaging $\sim 600 \mathrm{~m}$ of LHC, polluting the beam vacuum over more than 2 km . Around 400 MJ were released in the incident (600 MJ stored).
Arcing at the interconnection

Magnet displacement

53 magnets had to be repaired -1 year of downtime

Over-pressure
The stored magnetic energy increases even further with VHECs - magnet protection and quality control will become even more critical !

Outline

Introduction
 Luminosity

Magnets
High intensity beams
Machine protection
Infrastructure and injectors

Synchrotron radiation

- Synchrotron radiation (SR) from the proton beams is beneficial for luminosity (cooling) and diagnostics (profile measurements).
\square But SR also deposits heat inside a magnet that is operated at cryogenic temperature \rightarrow very expensive to remove the heat at low temperature!
- To protect the inner aperture of the magnet (at 1.9-4 K) a beam screen (BS) is inserted into the vacuum chamber as shielding against synchrotron radiation, image currents and also electron clouds.

At the LHC the BS is operated at 20-40 K for a total energy deposition of $\sim 1.5 \mathrm{~W} / \mathrm{m}$

Beam-screens for FCC-hh

High synchrotron radiation load of protons @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs

Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- avoids photo-electrons, helps vacuum

Large cooling pipes

FCC-hh beam screen prototype

Beam screen cooling at FCC-hh

16K beam-screen would require 300 MW for cooling 50K requires $100 \mathrm{MW} \rightarrow$ current baseline

For 4K magnets would prefer T > 100K

- But more impedance to the beam (higher resistivity)
L. Tavian, C. König, Ph. Lebrun

Cross section determines length that can be cooled

Electron clouds

- Electron cloud effects:
- Vacuum pressure rise.
- Impact on beam quality (emittance growth, instabilities, particle losses).
- Excessive energy deposition on the vacuum chamber ($\sim 20 \mathrm{~K}$ at LHC) \rightarrow heat load on the cryogenic system.
- Electron clouds affect all high intensity machines with positive bunch charge ($\mathrm{e}^{+} \Leftrightarrow$ B-factories).

\qquad

Bunch N+1 accelerates e-, Process repeats multiplication at impact

for Bunch $\mathbf{N + 2}$

If the probably of emitting a secondary electron (Secondary emission yield [SEY]) above threshold SEY $>\mathrm{SEY}_{\text {th }} \rightarrow$ avalanche effect (multipacting) SEY t_{th} depends on bunch spacing and population

Electron clouds at LHC

- Example of heat load to the LHC cryogenic system (per ~100 m of accelerator) due to electron cloud in regular operation.
- LHC is operated ~ at the limit of the cryogenic cooling capacity of the BS !

Electron cloud mitigation

Developments are ongoing to improve the vacuum chamber properties in terms of electron cloud for the LHC luminosity upgrade:

- Carbon coating of surface
- Laser treatment of surface (LESS)

Geometry is very important!

P. Costa Pinto et al.

Outline

Introduction
 Luminosity

Magnets

High intensity beams
Machine protection
Infrastructure and injectors

Stored energy: past - present - future

LHC pushed the stored energy from few MJs to > 100 MJs
The large hadron collider will make another step towards GJs

Stored energy challenge

Stored energy ~10 GJ per beam

- At least one order of magnitude higher than for LHC, equivalent to A380 (560 t) at nominal speed ($850 \mathrm{~km} / \mathrm{h}$).

- Collimation, control of beam losses and radiation effects (shielding) important.
- Injection, beam transfer and beam dump very
 critical.

Machine protection issues to be addressed early on!

LHC beam dumping system

15 fast 'kicker' magnets deflect the beam to the outside

A complex system, and yet it
 must be ultra-highly reliable! It must not fail!

LHC dump line

The LHC dump block

The dump block is the only LHC element capable of absorbing the nominal beam. The beam is swept over dump surface to lower the power density.

Dump and dilution - FCC-hh

F. Burkart et al.
2.5 km dump line
1.4 km dump insertion
2.8 km collimation insertion

Kicker	Septum	bend	Dilution	Absorber

$2 m$

LHC pattern (same scale)

Horizontal and vertical kicker system as in the LHC
$\bigcirc \quad \sim \mathbf{3 0 0} \mathbf{~ m}$ long, ~150 kickers (\rightarrow advantage for failures).

- Large magnet apertures required towards dump

Dilution is very critical, different solutions studied

- Require up to 80 cm radius for the diluted beam.

Beam collimation (cleaning)

\square The LHC is the first hadron collider to require a complex multi-stage collimation system to operate at high intensity.

- Previous hadron machines used collimators only for experimental background conditions.

Multi-stage collimation systems

- To be able to absorb the energy of the high energy hadrons, a multi-stage collimation system is required - primary, secondary, tertiary.
- Demonstrated to work at the LHC - with excellent performance.
- While for LHC the efficient is at the level of 99.95% or better, VHECs may require one order of magnitude better cleaning.
- Efficiency = fraction of protons lost from the beam that are intercepted.

New collimator materials

Beam tests for new collimator materials:

- They should be robust (shock impacts) and good conductors

Inermet 180, 72 bunches

Copper-Diamond 144 bunches

Molybdenum, 72 \& 144 bunches

Glidcop, 72 bunches (2 x)

A new regime

- At the LHC the energy stored in the injected and circulating present a damage to any accelerator component around the beam line, but passive protection is available to mitigate all failure cases.
- At the LHC such passive protection will survive the beam impacts in case of failure provided the machine is correctly setup and operate safely.
- For the next generation VHECs, this may no longer the case due to the higher particle energy (more material to absorb the beams) and the higher stored energy: failures could lead to damage of the protection components.

Vicious little falling objects

- LHC observed strange beam losses that where nicknamed UFOs (Unidentified Falling Objects).
- According to the most credible theory, UFOs are dust particles that fall into the beam and generate beam losses due to inelastic collisions with the beam. These losses can quench a superconducting magnet.
- If the losses are too high, the beams are dumped to avoid a magnet quench (up to 20 times / year)

- Conditioning is observed over time, and rates come down.
- At the LHC we are 'lucky' that the dump rates are acceptable, and the beam loss generally below dump threshold. This may NOT be the case for the more sensitive VHECs!

A potential VHEC killer !

Outline

Introduction
Luminosity
Magnets
High intensity beams
Machine protection
Infrastructure and injectors

Tevatron

Depth: ~10 m

Installed in a 6.3 km tunnel

Installed in the 26.7 km LEP tunnel

Depth: 70-140 m
Lake Geneva

5

FCC

CERN
 Topographical constraints, critical areas

FCC 100 km possible siting

Geology Intersected by Shafts			Shaft Depths		
Shaft Depth (m)		Geology (m)			
Point	Actual	Quaternary	Molasse	Urgonian	Calcaire
A	304	12	292	0	0
B	266	80	186	0	0
C	257	58	199	0	0
D	272	64	208	0	0
E	132	64	68	0	0
F	392	0	392	0	0
G	354	116	237	0	0
H	268	0	268	0	0
1	170	12	158	0	0
J	315	22	293	0	0
K	221	52	169	0	0
L	260	21	239	0	0
Total	3211	501	2710	0	0

Alignment Profile

A tool developed by a consultant firm including all information on the geology is able to model the ring at varying depth, angle etc \rightarrow layout optimization.

SSC and LHC tunnels

a LHC \& SSC tunnels quite similar in size.
\square Single tunnels represent a risk to personnel in case of fire or Helium release due to the long distance to an escape point \rightarrow LHC experience...

FCC tunnel layouts

First studies launched on

- Single vs. double tunnel
- Ventilation (fire, Helium !)
- Caverns, shafts, underground layout
- Technical infrastructures
- Safety, access
- Transport, integration, installation
- Operation aspects

Electricity consumption - CERN

- The current CERN electricity consumption is around $\sim 180 \mathrm{MW}$.
- The LHC (with experiments) uses ~120 MW (~35 MW for cryogenics).
\square A VHEC would require an additional $\mathbf{\sim} \mathbf{2 5 0} \mathbf{- 4 0 0}$ MW of power.

Operation and availability

- Operating ever larger colliders increases the number of components (that can fail !) and the complexity of commissioning and of operation.
\square The LHC has demonstrated that huge cryogenics systems can operate with availability of 95% and higher.
\square The LHC also highlighted the importance of availability, good maintenance and design policies (redundancy): work on availability managed to gain an important factor in the operation efficiency and ultimately integrated luminosity.

Key factor for VHECs !

Summary

\square VHECs are the potential next generation discovery machines, there are currently 3 projects that are studied: HE-LHC, SPPC and FCC-hh.
\square VHECs present us with a number of challenges, the first one being to build $\sim 16 \mathrm{~T}$ magnets to be able to run them.

- Beam dynamics challenges are important but potential solutions are in sight.
\square Once technical aspects have been solved, the society impact will have to be considered: cost, energy consumption, impact on the environment, effect on property value etc.

Public Acceptance
\& Must work on public acceptance from the beginning.
\& The old way of "decide, announce, defend" will not work.
P. Limon, VLHC seminar at Fermilab

A few selected references

- T. Sen, SSC Parameter Review, Joint Snowmass-EuCARD / AccNet-HiLumi LHC workshop, February 21-22, 2013
- The LHC Design Report, CERN-2004-003
- The VLHC design study group, Design Study for a Staged Very Large Hadron Collider, Fermilab-TM-2149
- P. Limon, Design Study for a Staged Very Large Hadron Collider, Fermilab-TM2149, 2001
- J. Tang et al, Concept for a Future Super Proton-Proton Collider, arXiv: 1507.03224v1 [hep-ex]
- The Future Circular Collider Study, http://cern.ch/fcc
- FCC week 2016, https://indico.cern.ch/event/438866/

LHC accelerator complex

Max. P	Length /
$(\mathrm{GeV} / \mathrm{c})$	Circ. (m)

LINAC2*	0.050	30
Booster* *	1.4	157

PS $26 \quad 628$
SPS $\quad 450 \quad$ 6'911
LHC 6'500 26'657
*: kinetic energy
\downarrow neutrons
antiprotons
electrons
neutrinos

AD Antiproton Decelerato PS Proton Synchrotron SPS Super Proton Synchrotron

LHC Large Hadron Collider
n -ToF Neutron Time of Flight CNGS CERN Neutrinos Gran Sasso

Advanced super-conductors

Beam Dump Considerations

8GJ kinetic energy per beam

- Airbus A380 at 720km/h
- 2000kg TNT
- 400kg of chocolate
- Run $25,000 \mathrm{~km}$ to spent calories
- O(20) times LHC

Simulation show beam will penetrate ~ $\mathbf{3 0 0} \mathbf{m}$ in Copper, assuming no dilution.
\rightarrow Dilution required!

Hydrodynamic tunneling F. Burkart et al. Time = 1250 ns Temperature (K)

Collimation for FCC-hh

- To protect machine and experiments,
- At injection the machine aperture is tightest in the arcs, at collision energy in the magnets next to the

