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Same Sign Lepton Excesses
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SR1b 1bin Total ee eµ µµ

Observed events 10 6 4 0

Total expected background events 4.7± 2.1 1.4± 0.8 2.1± 1.1 1.2± 0.4

Components of the background
t¯tV , t¯tH, tZ and t¯tt¯t 2.5± 1.7 0.6± 0.3 1.2± 1.0 0.7± 0.3
Dibosons and tribosons 0.9± 0.4 0.10± 0.04 0.3± 0.1 0.5± 0.3
Fake leptons 0.8+1.2

�0.8 0.4+0.7
�0.4 0.4+0.5

�0.4 < 0.1
Charge-flip electrons 0.5± 0.1 0.3± 0.1 0.3± 0.1 –

p(s = 0) 0.07 0.01 0.18 0.50

ATLAS (SUSY), http://arxiv.org/abs/1404.2500 (5 signal regions in paper)
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ATLAS (TT), http://arxiv.org/abs/1504.04605 ATLAS (ttH), http://arxiv.org/abs/1506.05988

The ATLAS analyses are correlated, and same for CMS
So, ~2 analyses and excesses are < 3 σ

Worth keeping an eye on?  Sure.
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13 TeV
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Not much there….

ATLAS-CONF-2016-037

CMS-PAS-SUS-16-020

CMS-PAS-SUS-16-024 
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Not SUSY?
❖ SUSY theories (and others with full or partial set of 

SM-partners) have a number of attractive features 
- “Explanation” for low Higgs mass (and sometimes EWSB) 

- Gauge coupling unification (often) 

- Dark matter candidate (if introduce a new                                
parity, natural in UED, ~ad-hoc in SUSY) 

- No new interactions (often) 

❖ But answering those questions comes at a large 
cost 
- Many new particles, with masses and mixing angles 

- Need to explain why mass scale is so low (or high), spin?

71

MSSM: Allanach et al., 
hep-ph/0407067
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MSSM: Allanach et al., 
hep-ph/0407067

Dinosaurs o
n Venus?
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Less Ambitious
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Giving up on Dark Matter
❖ Electroweak-scale WIMPs fit the data well 

- But maybe hard/impossible to produce at colliders 

❖ Or dark matter not WIMPs at all 
❖ Back to problem #1: 

➡ Top partner!
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Singlets, Doublets, ...
❖ Vector-like top partners (still fermions) less 

constrained by flavor.... 
- Opens up decay modes 

- Top partner partners: 
- X5/3 

- ... 

❖ Rich set of signatures 
- Just no huge MET 

- At least not systematically…
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W’s Can Be Light
❖ T→Wb with mT ~600 GeV 
➡ W will be boosted, and if decays hadronically → 

single jet

76

“Dijet W” “Monojet W”
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Wb versus Ht
❖ T→Wb yields the same final state as t→Wb 

- Need to discriminate, e.g. reconstruct mT

77

T → Wb

http://arxiv.org/abs/1505.04306
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Wb versus Ht
❖ T→Wb yields the same final state as t→Wb 

- Need to discriminate, e.g. reconstruct mT 

❖ T→Ht: ttHH, so WWbbbb
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T → Wb T → Ht

http://arxiv.org/abs/1505.04306



Gustaaf Brooijmans SLAC Summer Institute 2016

Wb versus Ht
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T → Wb

http://arxiv.org/abs/1505.04306
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T → Ht

Wb versus Ht
❖ T→Wb yields the same final state as t→Wb 

- Need to discriminate, e.g. reconstruct mT 

❖ T→Ht: ttHH, so WWbbbb
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http://arxiv.org/abs/1505.04306
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All Together Now

81
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Presented Differently
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❖ It turns out these targeted searches maybe weren’t 
useful (or all that well optimized) 
- “In particular, we  find that missing energy searches 

designed for superparticle production, supply superior 
sensitivity for vector-like quarks than the dedicated new 
quark searches themselves” 
- Biekötter, Hewett et al.  arXiv:1608.01312 

- “Owing to the much higher production cross-sections of 
heavy top quarks as compared to stops, masses up to 
mT≈850 GeV can be excluded from the Run 1 stop searches” 
- Kraml et al. arXiv:1607.02050 

❖ The moral of the story…

83

Anecdotes From the Field (II)
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Also
❖ Somewhat simplistic: other new particles?

84

G Cacciapaglia, GB 
in Les Houches 2015



Gustaaf Brooijmans SLAC Summer Institute 2016

Uncertainties

85
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Systematic Uncertainties
❖ Statistical uncertainties are easy: with limited number 

of events (and experiments), precision on a 
measurement is limited 

❖ Systematic uncertainties vastly more complex 
- Example: measure a cross-section: 

- L is the integrated luminosity, A the acceptance, ε the 
efficiency  
- Statistical uncertainty comes from Nevents 

- Systematic uncertainties arise from limited knowledge of L, A and ε 
‣ L is estimated from Van der Meer scans 

‣ A typically depends on parton distribution functions 

‣ efficiency is a convolution of many experimental uncertainties
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Example
❖ HT is the sum of scalar energies of jets, 

leptons,… 
- If the jet energy scale is different between 

data and MC, comparison is wrong 

- If the jet energy scale dependence on jet 
energy is wrong, distort shape 

- etc. 

❖ But how do I determine the jet energy 
scale uncertainty? 
- testbeams (single pions) 

- dijet balance 

- γ/Z+jet balance 

- … 

❖ What about the MC generation itself?

87
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Simulation
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Anecdotes From the Field (III)
❖ tt charge asymmetry at the Tevatron 

- At Feynman diagram level, NLO effect (Tevatron is proton-anti-
proton collider)

89

Ca. 2010, big fuss:
much larger than SM!

http://arxiv.org/abs/1107.4995

_
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Anecdotes From the Field (III)
❖ ttbar charge asymmetry at the Tevatron 

- At Feynman diagram level, NLO effect (Tevatron is proton-anti-
proton collider) 

- In real life, already exists at ~LO! 
- Shown it is there in Pythia: parton shower, recoils! 

90

Ca. 2010, big fuss:
much larger than SM!

http://arxiv.org/abs/1107.4995

Skands et al: http://arxiv.org/abs/1205.1466

http://arxiv.org/abs/1405.0421

(My) current conclusion:
no BSM physics here: just reality

vs Feynman diagrams

- Many scales in events Brodsky, Wu https://arxiv.org/abs/1205.1232
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About Generators…
❖ We use four kinds of Monte Carlo generators 

- “Calculators” (often NNLO) do not actually generate events, 
they just calculate some (limited) distributions, like W pT 

- Traditional 2 → 2 generators: LO, e.g. qq → WZ 
- Include parton shower, i.e. QCD radiation, and hadronization to jets 

- pythia and herwig 

- “Matrix Element” 2 → n (n < 9): LO, e.g. qq → eνjjjj 
- Necessary to generate events with multiple hard jets 

- Require matching to parton shower to avoid double counting 

- NLOwPS 2 → n generators: include NLO corrections 
- I.e. in a sense they are 2 → n with virtual corrections

91



Gustaaf Brooijmans SLAC Summer Institute 2016

Correction Factors
❖ Of course, always limitations, so “K-factors” needed 

- Different ones for heavy flavor etc.....  (DØ) convention to 
avoid confusion.... 

92
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Correction Factors

93

In addition to W/Z pT re
weighting

❖ Of course, always limitations, so “K-factors” needed 
- Different ones for heavy flavor etc.....  (DØ) convention to 

avoid confusion.... 
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Sometimes Physics Helps
❖ At the LHC, produce more W+ than W-  

- Can exploit that to normalize W+jets 
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6.1 ℓ + jets channel

The event must contain exactly one isolated lepton, and
events where an electron shares an inner detector track
with a non-isolated muon, or with a second lepton with
pT > 15 GeV, are rejected. The total t t̄ event fraction is
enhanced by applying the following event-level cuts. In
the electron channel, Emiss

T must be larger than 35 GeV
and mT > 25 GeV, where mT is the lepton-Emiss

T trans-
verse mass;3 in the muon channel, Emiss

T > 20 GeV and
Emiss

T + mT > 60 GeV are required. If one of the jets has
mass mj > 60 GeV, the event must contain at least three
jets with pT > 25 GeV and |η| < 2.5; if not, at least four jets
satisfying the same pT and η criteria must be present. The
leading jet must have pT > 60 GeV, and at least one of the
jets must be tagged as a b-jet. The requirement on the num-
ber of jets is relaxed when one jet has mj > 60 GeV since
for top quarks with significant boost the decay products are
collimated, and multiple quarks from top quark or W boson
decay can be reconstructed as a single, massive jet. This sub-
sample represents approximately 0.3 % of the selected event
sample. The total signal acceptance times branching ratio to
t t̄ is 7.4 % for a topcolour Z′ boson of mass mZ′ = 800 GeV
and 7.3 % for a KK-gluon of mass mgKK = 1300 GeV.

6.2 Dilepton channel

The event selection follows that used in a recent ATLAS
t t̄ production cross-section measurement [53]. Candidate
events are required to have two isolated leptons of oppo-
site charge and two or more jets with pT > 25 GeV. In order
to suppress the Z plus jets background, ee and µµ events
are required to have an invariant dilepton mass outside the
Z boson mass window, defined as |mZ − mℓℓ| < 10 GeV,
and Emiss

T > 40 GeV. An additional cut mℓℓ > 10 GeV is
applied to the data in order to conform with the lower mℓℓ

cut-off in the Z plus jets simulation and to reduce back-
grounds from meson resonances. In the eµ channel the non-
t t̄ background is suppressed by requiring the scalar sum of
the transverse momenta of the identified leptons and jets to
be larger than 130 GeV. The total signal acceptance times
branching ratio to t t̄ is 1.3 % for a topcolour Z′ boson of
mass mZ′ = 800 GeV and 1.5 % for a KK-gluon of mass
mgKK = 1100 GeV.

7 Data-driven background modelling

For the dominant background sources, t t̄ and single top pro-
duction, W plus jets in the ℓ + jets channel and Z plus jets

3The transverse mass is defined by the formula mT =√
2pℓ

TEmiss
T (1 − cos#φ), where pℓ

T is the lepton pT and #φ is

the azimuthal angle between the lepton and Emiss
T .

in the dilepton channel, the simulated samples are corrected
based on measurements in data. The multijet background
is determined directly from data. All other backgrounds are
taken without modification from simulation.

7.1 SM t t̄ and single top modelling

As discussed in Sect. 4, the SM t t̄ and single top back-
grounds are simulated using the MC@NLO generator with
CTEQ6.6 PDFs. To investigate the impact of the choice
of PDFs on modelling of this dominant background, the
events are re-weighted to MSTW2008nlo [54] PDFs and
the data are compared to the background expectation for
angular variables: jet and lepton rapidities, and azimuthal
angles between these objects and Emiss

T . Since the use of
MSTW2008nlo leads to better agreement in these angular
variables, samples re-weighted to these PDFs are used in the
analysis. Distributions obtained with CTEQ6.6 PDFs are
used to estimate the systematic uncertainty associated with
this shape modelling.

7.2 W plus jets corrections

For the ℓ + jets channel, the W plus jets background is de-
termined using the ALPGEN samples described in Sect. 4,
with data-driven corrections.

The flavour composition is determined from data based
on the tagged fraction of W plus one- and two-jet events [55],
and the known b-tagging efficiencies, measured using var-
ious techniques involving jets containing muons [56]. The
MC predictions for different flavour contributions are scaled
accordingly, adjusting the “light parton” scale factor to keep
the untagged W plus two jets normalization unchanged. The
Wbb̄ and Wcc̄ components are scaled by a factor 1.63, the
Wc component by a factor 1.11, and the “light parton” com-
ponent by a factor 0.83. The flavour composition uncertainty
of the W plus jets background is estimated by varying these
scaling factors by their uncertainties (13 % for Wbb̄ and
Wcc̄, 9 % for Wc).

Normalization factors are derived based on the charge
asymmetry in W boson production at the LHC [57]:

(NW+ + NW−)exp =
(

rMC + 1
rMC − 1

)
(NW+ − NW−)data

where NW+ and NW− are the number of events with W+

and W− bosons, rMC = NW+/NW− , and the superscripts
“exp” and “data” denote expected and data events, respec-
tively. The difference (NW+ − NW−)data and ratio rMC are
extracted from data and simulation, respectively, as a func-
tion of the number of b-tags and the number of reconstructed
jets passing the selection cuts. The background contamina-
tion in the W boson samples extracted from data is verified
to be charge-symmetric within uncertainties, and cancels in

But what about shape??
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Anecdotes From the Field (IV)
❖ Pile-up events (“minimum 

bias”) do produce jets

95
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Anecdotes From the Field (IV)
❖ Pile-up events (“minimum 

bias”) do produce jets 
- At high L, require that tracks 

pointing to jets originate from 
same vertex as lepton 

- High η excess disappeared!
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Anecdotes From the Field (IV)
❖ Pile-up events (“minimum 

bias”) do produce jets 
- At high L, require that tracks 

pointing to jets originate from 
same vertex as lepton 

- High η excess disappeared! 

- Eta-dependence of jet-vertex 
match turns out to have shape very 
very similar to excess 

- After correcting for this, excess 
was back....

97



Gustaaf Brooijmans SLAC Summer Institute 2016

So...
❖ After all K/K’/S/HF-factors 

and  boson pT reweighing: 
❖ Similar angular differences 

between generators: reweigh 
alpgen to sherpa

98

arXiv:0706.2569

Alpgen, MadEvent, 
Helac with MLM,

Sherpa and Ariadne
with CKKW 

matching
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Z (→ll) + jets
❖ Can get a clean sample, check if our simulation reproduces 

the data

99

⇒ yes, with

~expected
deviations

Need 
reweighing

of MC
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Anecdotes From the Field (V) 
❖ Searched for WW/WZ in lνjj 

❖ The background here is not SM, it is uncorrected alpgen!! 

- But this is not the issue.....

100

Phys.Rev.Lett.106:171801
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Systematics Profiling
❖ Systematic uncertainties are propagated through the full 

analysis chain to the discriminating distribution 
- E.g. we repeat the analysis with jet energy scale shifted up & down 

by 1σ 
- Some systematic uncertainties affect shape (jet/lepton/photon 

reconstruction efficiency, energy scale and resolution, pT 
distributions, background models), others only normalization 
(lepton reconstruction efficiencies and momentum calibration, 
background normalizations, theoretical cross-sections and 
luminosity) 

- Systematic uncertainties are treated as nuisance parameters when 
fitting signal+background to the data 
- I.e. modify signal and background shape 
- Can be fixed, or allowed to change

101
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Systematics Profiling
❖ Nuisance parameters tend to be correlated, but 

not 100%, among backgrounds 
- Can affect rates, shapes, or both (in any distribution), 

and often asymmetric and non-gaussian

102

Toy Example (W. Fisher)
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❖ Generate pseudo-experiments (events in bins 
according to poisson), then for each experiment vary 
nuisance parameters 
- Variations in background  (& S+B) prediction 

- Compare results to data using log-likelihood ratio 

❖ We can maximize likelihood ratio as a function of 
nuisance parameters → constrain them 
- I.e. use full shape of distribution(s) to see which background 

uncertainties are over/underestimated 
- Of course limited to size of statistical fluctuations 

- Can remove bins with large S/B if needed 
- Mostly important if uncertainties lead to similar shape distortions 

- Want enough background-rich phase space in fit! 
- Even include control regions

103
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❖ Test example: 
- Data constructed to disagree with background-only 

hypothesis (wrong estimates for background uncertainties) 

- But to agree with background-only better than signal+ 
background 
- Improvement quite spectacular (by construction in example)

104
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ttH
❖ ttH important measurement and discovery channel 

- If mH had been smaller, no H → γγ, at 14 TeV S/B better for ttH 
than VH 

- Direct probe of t-H coupling 

❖ Studied pre-data and looked good, but ttbb only known 
at LO at that time… 

❖ In 2009, Bredenstein, Denner, Dittmaier and Pozzorini 
published ttbb@NLO (JHEP 1003 (2010) 021 and earlier) 
- ttbb twice as high as expected 

- At higher Higgs pT, significant shape distortions 

- Would ttH be observable at all? 

- How can we understand ttbb with sufficient accuracy?

105
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Production
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Decay

107

Control Regions

Signal Regions

ATLAS-CONF-2016-080
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mbb
❖ Clearly, mbb is a good discriminating variable 

- But resolution is poor 

- Include other variables, combine using multivariate 
tools (NN, BDT)

108
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MVA
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BDT Outputs

110

Uncertainties much 
larger than signal!

And then there
are shape uncertainties
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Closer Look

111

Strong handle 
on tt+light,

ttcc and ttbb
contributions

⇒
Include in fit!



Gustaaf Brooijmans SLAC Summer Institute 2016

Fit Results
❖ Need to compare 

starting point and 
results 
- Pathologies due to lack 

of MC stats in some 
areas, strong 
correlations, … 

❖ Crucial to design 
analysis with good 
control regions: fit helps 
address least 
understood systematics

112

ATLAS ttH search: arXiv:1503.05066
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Pre- vs Post-Fit

113
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Oh Yeah

114
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So, Physics Analysis
❖ Start from: 

- “How well do we understand data and the SM?” 

- How confident are we in corrections we apply?   

❖ Given that: 
- Which measurements can we make? What do we need to do to 

improve our understanding? 

❖ Balance the work! 
- Early, low background searches 

- Detailed understanding/verification of SM predictions 

❖ Increasingly complex searches 

- Tough backgrounds, hard work 

- Don’t scorn multivariate and statistical tools
115

Complementary measurements!
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Excesses

116
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Extra Dimensions
❖ A promising approach to quantum gravity 

consists in adding extra space dimensions: string 
theory 
- Additional space dimensions are hidden, presumably 

because they are compactified 

❖ Radius of compactification usually assumed to be 
at the scale of gravity, i.e. 1018 GeV 
- In ’90 Antoniadis realized they may be much larger...

117

Source: PhysicsWorld

Phys.Lett.B246:377-384,1990
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Warped Extra Dimensions
❖ “Simple” Randall-Sundrum model: 

- SM confined to a brane, and gravity propagating in 
an extra dimension 

- The metric in the extra dimension is “warped” by a 
factor exp(-2krcφ) 

- (Requires 2 branes)

118

Planck brane
x5

SM brane

AdS5

Drawing by G. 
Landsberg

G

φ=0φ=π
rc

xµ xµ
rc: 
compactification 
radius

Randall & Sundrum, Phys.Rev.Lett. 83 (1999) 3370
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Graviton Excitations
❖ In RS, get a few massive graviton excitations 

- Widths depend on warp factor k 

- Mass separation = zeros of Bessel function 
➡ Smoking gun!

119

(BRs also different 
than Z’: 

e.g. γγ allowed)
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Hierarchies
❖ Physics on a curved gravitational background: 

❖ Scales depend on position along extra 
dimensions 
- UV brane scale is MPl = 2 x 1018 GeV 

- IR brane scale is MPl e-kL ~ 1 TeV if kL ~ 30 

❖ If were to localize Higgs on IR brane, naturally get 
EW scale ~ 1TeV (from geometry!)

120

Hierarchies from X-Dim’s

Title

m

1/R

2/R

3/R

e−
L

spin-1
2

e−
R

spin-1
2

γ

spin-1

y = 0

y = L

k is the spacetime curvature

UV brane
IR brane

– p. 5/7

Physics on a curved gravitational background has unusual properties

Scales depend on position along extra dimension

UV brane characterized by MPl = 2 × 10
18

GeV

IR brane characterized byMPl e
−kL

∼ 1 TeV (if kL ∼ 30)

If Higgs localized on IR brane → (EW scale from geometry!)⟨H⟩ ∼ TeV
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Flavor
❖ Interesting variation has fermions located along the 

extra dimension 
- Fermion masses generated by geometry 

- Heavier fermions are closer to IR brane, and gauge 
boson excitations as well 

- Gauge boson excitations expected to have masses in the 3-4 
TeV range (bounds from precision measurements) 

- Couple mainly to top/W/Z (!) 

- Flavor changing determined by overlap of fermion “wave 
function” in the ED 

- Nice suppression of FCNC etc.
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Graphically

122

(From K Agashe et al, arXiv:1608.00526)
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Gauge Boson Excitations
❖ Excitations of the gauge 

bosons are very 
promising channels for 
discovery 
- Couplings to light 

fermions are small 
- Small production cross-

sections 

- Large coupling to top, WL, 
ZL 

- Look for tt, WW, ZZ 
resonances (that can be 
wide)
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Figure 3: Invariant mass distribution of tt̄ pairs coming from the KK gluon resonance, and SM
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100 fb−1 of luminosity.
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Dibosons
❖ Signature of Randall-Sundrum excitations as 

well as W’, Z’ 
- Can look for e.g. W’ → WZ, WH 

- Many final state options: lνll, lνqq, qqll, qqqq, … 

- Three leptons → low background but low branching 
ratio: good at low mass where backgrounds are large 

- Fully hadronic → high branching ratio but substantial 
multi-jet background: good at high mass where cross-
section is lower 

❖ For high mass W’, Z’ decay products are 
boosted…ok for leptonic decays,  
- … but hadronic decay products merge: 

- ΔR ~ 2m/pT ⇒ for pT ~ 500 GeV, ΔR ~ 0.4, typical jet 
size
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Fully Hadronic Decays

125

❖ Decay hadrons reconstructed as a single jet 
- But even if it looks like a single jet, it originates from a 

massive particle decaying to two (W, Z, H) or three 
(top) hard partons, not one

- If I measured each of the partons in the 
jet perfectly, I would be able to: 
- Reconstruct the “originator’s” invariant mass 

- Reconstruct the direct daughter partons 

But 
- Quarks hadronize → cross-talk 

- My detector can’t resolve all individual 
hadrons

Drawing by F. Krauss
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Jet Mass
❖ Jet mass: invariant mass of all jet constituents 

- In principle, close to object mass 

- and invariant!
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Subjets
❖ Jet mass is not sensitive to structure 

- Can’t tell whether a jet is isotropic or not 

❖ Expect “blobs” with higher concentration of 
energy for jets from top/W/Z decays 

❖ Multiple ways of exploiting this.... 
- kT splitting scales, “mass drop”, …
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❖ kT jet algorithm is much better suited to 
understand jet substructure than cone: 
- Cone maximizes energy in an η x φ cone 

- kT is a “nearest neighbor” clusterer 

❖ Can use the kT algorithm on jet 
constituents and get the (y-)scale at which 
one switches from 1 → 2 (→ 3 etc.) jets 
- Scale is related to mass of the decaying 

particle

kT Splitting Scales
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Overview: Jet-Algorithms

cone-type

maximizes
energy
inside a
η × φ-cone

simple cone
midpoint
seedless cone

cluster-type

clusters
nearest
neighbours Kt

Tanju Gleisberg Atlas tutorial, CERN, 02. 06. 2006 – p.6

Overview: Jet-Algorithms

cone-type

maximizes
energy
inside a
η × φ-cone

simple cone
midpoint
seedless cone

cluster-type

clusters
nearest
neighbours Kt

Tanju Gleisberg Atlas tutorial, CERN, 02. 06. 2006 – p.6

Cone

kT
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Mass Drop

❖ Introduced to recover          
(W/Z)H→ (W/Z)bb at the LHC 
- In boosted regime, Wbb and 

Zbb backgrounds easier to 
manage 

- But strategy can be used more 
generically 

129

BDRS, Phys.Rev.Lett. 100 (2008) 242001
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Grooming
❖ Decluster (or recluster with small R), and remove soft stuff 

- Clean up soft QCD radiation/connection to underlying event

130

ATLAS, JHEP09 (2013) 076
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Proof of Principle
❖ W-jets from top quarks

131

ATLAS, JHEP09 (2013) 076
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Added Benefits
❖ Pile-up is a big deal at hadron colliders 

- Low-pT, “uninteresting” QCD will always have a much 
larger cross-section than rare processes we’re hunting

132

!Optimal parameter set/strategy is detector-dependent!



Gustaaf Brooijmans SLAC Summer Institute 2016

Many More Techniques
❖ Whole “jet structure” community exists 

- Reports of BOOST workshops a very useful resource: 
- Boosted objects: A Probe of beyond the Standard Model physics, A. Abdesselam 

et al, Eur.Phys.J. C71 (2011) 1661; Jet Substructure at the Tevatron and LHC: New results, 
new tools, new benchmarks, A. Abdesselam et al, J.Phys. G39 (2012) 063001 

- Direct comparison of multiple taggers, and “groomers” 

- More tools have been developed, and also more 
extensive non-perturbative calculations of the jet 
structure 

- Many of the tools available in the fastjet library 
(Cacciari, Salam, Soyez) 
- http://www.lpthe.jussieu.fr/~salam/fastjet/
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Decays to VH?
❖ Both ATLAS & CMS have analyses with b-tags 
⇒ reduced acceptance 

❖ CMS ZH ⇒ ττJ and all-hadronic VH
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Speculating…
❖ Hints for a W’? 

- If it’s WR it might decay via νR: 
- Dilepton + two jets final state
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And Dijets

140
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And Dijets

➡ Intriguing number of 1-2 sigma excesses at ~1.9 TeV (mostly at edge of 
kinematic range):  
- 2 in ATLAS: all-hadronic diboson, dijet 

- 5 in CMS: all-hadronic, llJ, WH diboson, WR, dijet, dilepton
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Comparing Excesses
❖ Are they all at the same mass? 

❖ Somewhat… needs 2016 data
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We Should Have Excesses!
❖ Run 1:  

- ATLAS: ~50 exotics + ~40 susy papers @ 8 TeV 
- CMS: ~50 exotics + ~25 susy papers @ 8 TeV 
- Expect ~eight false 2σ (excesses+deficits) and maybe one 3σ 

❖ Expect ~four >2σ and 0.25 >3σ accidental excesses 
❖ 3σ:  

- ATLAS Z+MET 

❖ 2+σ: 
- H → μτ 

- ~2 in same-sign dileptons 

- ~4 in W’/Z’-type searches 

❖ Count is ~double… 
❖ … and false positives not expected to cluster…
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Thanks 

(and mainly:  question everything!)
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