Same Sign Lepton Excesses

CMS (SUSY), http://arxiv.org/abs/1311.6736

CMS (ttH), http://arxiv.org/abs/1408.1682

(24 signal regions in paper)

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

SRVLQ2

SRVLQ1

SRVLQ3 SRVLQ4

ATLAS (TT), http://arxiv.org/abs/1504.04605

10⁴

10

10

Significa

ATLAS (SUSY), http://arxiv.org/abs/1404.2500

(5 signal regions in paper)

ATLAS (ttH), http://arxiv.org/abs/1506.05988

The ATLAS analyses are correlated, and same for CMS So, ~2 analyses and excesses are < 3 σ Worth keeping an eye on? Sure.

🔶 Data

T tĨH

Other

_____ ttW/Z

Dibos

SRVLQ5 SB4t2 SRVLQ6 SR4t3

Fake/non-prompt lepton:

13 TeV

ATLAS-CONF-2016-037

	SR3L1	SR3L2	SR0b1	SR0b2	SR1b
Observed	6	2	5	0	12
Total SM background	6.1 ± 2.2	1.2 ± 0.5	8.8 ± 2.9	1.6 ± 0.8	11.4 ± 2.8
$\overline{t\bar{t}Z}$	0.69 ± 0.25	0.10 ± 0.04	0.45 ± 0.18	0.10 ± 0.04	1.6 ± 0.6
$t\bar{t}W$	0.09 ± 0.04	0.02 ± 0.01	0.45 ± 0.17	0.13 ± 0.06	2.0 ± 0.7
Diboson	4.2 ± 2.0	0.7 ± 0.4	3.7 ± 1.9	0.7 ± 0.5	0.5 ± 0.4
Rare	0.8 ± 0.4	0.21 ± 0.13	0.8 ± 0.4	0.18 ± 0.12	2.7 ± 0.9
Fake/non-prompt leptons	0.29 ± 0.29	0.15 ± 0.15	2.9 ± 2.0	0.4 ± 0.5	3.3 ± 2.1
Charge-flip	_	_	0.50 ± 0.09	0.08 ± 0.03	1.43 ± 0.19
	SR3b	SR	lb-GG	SR1b-DD	SR3b-DD
Observed	2		2	12	4
Total SM background	1.6 ± 0.6	1.7	± 0.5	12.0 ± 2.7	1.9 ± 0.8
$\overline{t\bar{t}Z}$	0.19 ± 0.07	0.26	± 0.08	2.8 ± 0.9	0.30 ± 0.10
$t\bar{t}W$	0.17 ± 0.06	0.33	± 0.11	1.8 ± 0.6	0.18 ± 0.07
Diboson	< 0.1	0.08	± 0.19	0.6 ± 0.4	< 0.1
Rare	0.89 ± 0.31	0.64	± 0.34	2.6 ± 1.3	0.8 ± 0.4
Fake/non-prompt leptons	0.2 ± 0.5	0.21	± 0.33	2.5 ± 1.7	0.5 ± 0.6
Charge-flip	0.14 ± 0.03	0.18	± 0.07	1.74 ± 0.22	0.14 ± 0.03

Not much there....

Signal region

Not SUSY?

- SUSY theories (and others with full or partial set of SM-partners) have a number of attractive features
 - "Explanation" for low Higgs mass (and sometimes EWSB)
 - Gauge coupling unification (often)
 - Dark matter candidate (if introduce a new parity, natural in UED, ~ad-hoc in SUSY)
 - No new interactions (often)

- But answering those questions comes at a large cost
 - Many new particles, with masses and mixing angles
 - Need to explain why mass scale is so low (or high), spin?

Not SUSY?

- SUSY theories (and others with full or partial set of SM-partners) have a number of attractive fea
 - "Explanation" for low Higgs mass (and s
 - Venus Gauge coupling unification (ofter
 - Dark matter candidate inosaurs on parity, natural in UE
 - No new inte

10¹⁵ Q [GeV] destions comes at a large

- particles, with masses and mixing angles Ma
- Need to explain why mass scale is so low (or high), spin?

🔅 But a

COS

LHC &

et al.

10¹⁶

I: Allanacl

nep-ph/0407067

24

LC/GigaZ

Less Ambitious

Giving up on Dark Matter

Electroweak-scale WIMPs fit the data well

- But maybe hard/impossible to produce at colliders
- Or dark matter not WIMPs at all
- Back to problem #1:

➡ Top partner!

Singlets, Doublets, ...

- Vector-like top partners (still fermions) less constrained by flavor....
 - Opens up decay modes
 - Top partner partners:
 - X^{5/3}

. . .

- Rich set of signatures
 - Just no huge MET
 - At least not systematically...

- ♦ T→Wb with $m_T \sim 600 \text{ GeV}$
 - ➡ W will be boosted, and if decays hadronically → single jet

- ✤ T→Wb yields the same final state as t→Wb
 - Need to discriminate, e.g. reconstruct m_T

 $T \rightarrow Wb$ yields the same final state as $t \rightarrow Wb$

- Need to discriminate, e.g. reconstruct m_T
- ✤ T→Ht: ttHH, so WWbbbb

✤ T→Wb yields the same final state as t→Wb

- Need to discriminate, e.g. reconstruct m_T
- ✤ T→Ht: ttHH, so WWbbbb

✤ T→Wb yields the same final state as t→Wb

- Need to discriminate, e.g. reconstruct m_T
- ✤ T→Ht: ttHH, so WWbbbb

All Together Now

Presented Differently

Anecdotes From the Field (II)

- It turns out these targeted searches maybe weren't useful (or all that well optimized)
 - "In particular, we find that missing energy searches designed for superparticle production, supply superior sensitivity for vector-like quarks than the dedicated new quark searches themselves"
 - Biekötter, Hewett et al. arXiv:1608.01312
 - "Owing to the much higher production cross-sections of heavy top quarks as compared to stops, masses up to m_T≈850 GeV can be excluded from the Run 1 stop searches"
 - Kraml et al. <u>arXiv:1607.02050</u>
- The moral of the story...

Somewhat simplistic: other new particles?

T, B	qH	ql^+l^-	$q E_{\rm T}^{\rm miss}$	$ql^+ u$	qqq	qW^+W^-	qZH	qHH	qW^+Z	qW^+H
		Z, LQ	Z, LQ	W, LQ	Z/W	H,Q	Q	Q	Q	Q
qH	D	-								
ql^+l^-	A	A	-							
$q E_{\mathrm{T}}^{\mathrm{miss}}$	C	A	С	-						
$ql^{-}\nu$	D	A	С	А	-					
\overline{qqq}	E	A	B/C	A/B	A/E	-				
qW^+W^-	B	A	В	А	A/B	А	-			
qZH	A	A	А	А	А	А	A	-		
qHH	D	A	С	В	B/C	В	A	С	-	
qW^-Z	A	A	А	А	А	А	A	А	А	-
qW^-H	D	A	С	А	A/C	А	A	С	А	В

Table 1: A: ≥ 2 leptons (Z, $\geq 3W$, l + W). B: 1 lepton (2W). C: E_{T}^{miss} . D: VH, HH, tH. E: W/H/t+jets, all jets

X, Y	$ql^+ u$	qqq	qW^+Z	qW^+H
	W, LQ	W	Q	Q
$ql^-\nu$	А	-		
qqq	A/B	A/E	-	
qW^-Z	А	A	А	-
qW^-H	А	D	А	В

G Cacciapaglia, GB in Les Houches 2015

Table 2: A: ≥ 2 leptons $(Z, \geq 3W, l+W)$. B: 1 lepton (2W). C: E_{T}^{miss} . D: VH, HH, tH. E: W/H/t+jets, all jets

Uncertainties

Systematic Uncertainties

- Statistical uncertainties are easy: with limited number of events (and experiments), precision on a measurement is limited
- Systematic uncertainties vastly more complex
 - Example: measure a cross-section: $\sigma = \frac{N_{\text{events}}}{I_{\text{L}}A_{\text{C}}}$
 - L is the integrated luminosity, A the acceptance, ε the efficiency
 - Statistical uncertainty comes from Nevents
 - Systematic uncertainties arise from limited knowledge of L, A and $\boldsymbol{\epsilon}$
 - L is estimated from Van der Meer scans
 - A typically depends on parton distribution functions
 - efficiency is a convolution of many experimental uncertainties

- H_T is the sum of scalar energies of jets, leptons,...
 - If the jet energy scale is different between data and MC, comparison is wrong
 - If the jet energy scale dependence on jet energy is wrong, distort shape
 - etc.
- But how do I determine the jet energy scale uncertainty?
 - testbeams (single pions)
 - dijet balance
 - γ/Z+jet balance

- ...

What about the MC generation itself?

Anecdotes From the Field (III)

* tī charge asymmetry at the Tevatron

- At Feynman diagram level, NLO effect (Tevatron is proton-antiproton collider)

Anecdotes From the Field (III)

- ttbar charge asymmetry at the Tevatron
 - At Feynman diagram level, NLO effect (Tevatron is proton-antiproton collider) Forward-Backward Top Asymmetry, %

http://arxiv.org/abs/1107.4995

Ca. 2010, big fuss: much larger than SM!

- In real life, already exists at ~LO!
 - Shown it is there in Pythia: parton shower, recoils! Skands et al: http://arxiv.org/abs/1205.1466

Many scales in events Brodsky, Wu https://arxiv.org/abs/1205.1232

(My) current conclusion: no BSM physics here: just reality vs Feynman diagrams

About Generators...

- We use four kinds of Monte Carlo generators
 - "Calculators" (often NNLO) do not actually generate events, they just calculate some (limited) distributions, like W p_T
 - Traditional 2 \rightarrow 2 generators: LO, e.g. $q\overline{q} \rightarrow WZ$
 - Include parton shower, i.e. QCD radiation, and hadronization to jets
 - pythia and herwig
 - "Matrix Element" 2 \rightarrow n (n < 9): LO, e.g. $q\overline{q} \rightarrow evjjjj$
 - Necessary to generate events with multiple hard jets
 - Require matching to parton shower to avoid double counting
 - NLOwPS 2 → n generators: include NLO corrections
 - I.e. in a sense they are $2 \rightarrow n \underline{\text{with}}$ virtual corrections

Correction Factors

Of course, always limitations, so "K-factors" needed

- Different ones for heavy flavor etc.... (DØ) convention to avoid confusion....
- K-factor is purely theoretical, and denotes a (N)NLO/LO ratio of cross sections;
- K'-factor is also theoretical, and denotes a (N)NLO/LL ratio of cross sections. According to Steve, ALPGEN cross sections are Leading Log;
- S-factor is empirical, and comes on top of K or K' to bring MC in agreement with data. MC should be initially normalized to luminosity, and all correction (a.k.a. scale) factors should be applied (trigger, ID...);
- HF-factor is, in principle, theoretical, but in practice only theory inspired. It tells you by how much heavy flavor production should be increased, on top of K or K', and possibly S;
- S_HF-factor is empirical, and comes on top of K or K', S, and HF, to bring MC in agreement with data, after b-tagging.

Correction Factors

Of course, always limitations, so "K-factors" needed

- Different ones for heavy flavor etc..... (DØ) convention to avoid confusion....
- K-factor is purely theoretical, and denotes a (N)NLO/LO ratio of cross section:
- K'-factor is also theoretical, and denotes a (N)NLO/LL ratio of cross sections. According to Steve, ALPGEN cross sections are Leading Log;
- S-factor is empirical, and comes on top of K o K' to bring MC in agreement with data. MC should be initially normalized to luminosity, and all correction (a.k.a. scale) factors should be applied (trigger, ID...);

• HF-factor is, in principle, theoretical, but in practice only theory inspired. It tills you by how much heavy flavor production should be increased, on top of K or K', and possibly S;

• S_HF-factor is empirical, and comes on top of K or K', S, and HF, to bring MC in agreement with data, after b-tagging.

Sometimes Physics Helps

At the LHC, produce more W⁺ than W⁻

- Can exploit that to normalize W+jets

Anecdotes From the Field (IV)

Pile-up events ("minimum bias") do produce jets

 η of Leading Jet

Anecdotes From the Field (IV)

- Pile-up events ("minimum bias") do produce jets
 - At high *L*, require that tracks pointing to jets originate from same vertex as lepton
 - High η excess disappeared!

 η of Leading Jet

Anecdotes From the Field (IV)

- Pile-up events ("minimum bias") do produce jets
 - At high *L*, require that tracks pointing to jets originate from same vertex as lepton
 - High η excess disappeared!
 - Eta-dependence of jet-vertex match turns out to have shape very very similar to excess
 - After correcting for this, excess was back....

 η of Leading Jet

- After all K/K'/S/HF-factors and boson p_T reweighing:
- Similar angular differences between generators: reweigh alpgen to sherpa

Gustaaf Brooijmans

Can get a clean sample, check if our simulation reproduces the data

Anecdotes From the Field (V)

Searched for WW/WZ in *ℓvjj*

The background here is not SM, it is uncorrected alpgen!!

- But this is not the issue.....

Systematics Profiling

- Systematic uncertainties are propagated through the full analysis chain to the discriminating distribution
 - E.g. we repeat the analysis with jet energy scale shifted up & down by 1σ
 - Some systematic uncertainties affect shape (jet/lepton/photon reconstruction efficiency, energy scale and resolution, p_T distributions, background models), others only normalization (lepton reconstruction efficiencies and momentum calibration, background normalizations, theoretical cross-sections and luminosity)
 - Systematic uncertainties are treated as nuisance parameters when fitting signal+background to the data
 - I.e. modify signal and background shape
 - Can be fixed, or allowed to change

- Nuisance parameters tend to be correlated, but not 100%, among backgrounds
 - Can affect rates, shapes, or both (in any distribution), and often asymmetric and non-gaussian

- Generate pseudo-experiments (events in bins according to poisson), then for each experiment vary nuisance parameters
 - Variations in background (& S+B) prediction
 - Compare results to data using log-likelihood ratio
- ♦ We can maximize likelihood ratio as a function of nuisance parameters → constrain them
 - I.e. use full shape of distribution(s) to see which background uncertainties are over/underestimated
 - Of course limited to size of statistical fluctuations
 - Can remove bins with large S/B if needed
 - Mostly important if uncertainties lead to similar shape distortions
 - Want enough background-rich phase space in fit!
 - Even include control regions

Test example:

- Data constructed to disagree with background-only hypothesis (wrong estimates for background uncertainties)
- But to agree with background-only better than signal+ background
 - Improvement quite spectacular (by construction in example)

ttH important measurement and discovery channel

- If m_H had been smaller, no H $\rightarrow \gamma\gamma$, at 14 TeV S/B better for ttH than VH
- Direct probe of t-H coupling
- Studied pre-data and looked good, but ttbb only known at LO at that time...
- In 2009, Bredenstein, Denner, Dittmaier and Pozzorini published ttbb@NLO (JHEP 1003 (2010) 021 and earlier)
 - ttbb twice as high as expected
 - At higher Higgs p_T, significant shape distortions
 - Would ttH be observable at all?
 - How can we understand ttbb with sufficient accuracy?

13 fb⁻¹: ~7000 ttH events, 4200 ttH, H \rightarrow bb

<u>Mbb</u>

Clearly, mbb is a good discriminating variable

- But resolution is poor
- Include other variables, combine using multivariate tools (NN, BDT)

Variable	Definition	Region							
variable	Demition	$\geq 4j, \geq 4b \geq 4j, 3b 3j, 3b$		X7 · 11	DCW	Region			
General kiner	natic variables				Variable	Definition	$\geq 6j, \geq 4b$	$\geq 6j, 3b$	$5j, \ge 4b$
$\Delta \eta_{bb}^{\mathrm{avg}}$	Average $ \Delta \eta $ among pairs of <i>b</i> -jets	 ✓ 	—	-	General kiner	natic variables			0, =
$\Delta \eta_{\rm bb}^{\rm max}$	Maximum $\Delta \eta$ between any two <i>b</i> -jets	_	√	✓	$\Delta R_{\rm hh}^{\rm avg}$	Average ΔR for all <i>b</i> -tagged jet pairs	 ✓ 	\checkmark	\checkmark
$\Delta \eta_{\rm jj}^{\rm avg}$	Average $\Delta \eta$ among jet pairs	_	\checkmark	-	$\Lambda B^{\max p_T}$	ΔR between the two <i>b</i> -tagged jets with the			
$\Delta R_{bb}^{\max p_T}$	ΔR between the two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$	\checkmark	\checkmark	\checkmark	$\Delta n_{bb}^{\rm max}$	largest vector sum $p_{\rm T}$ Maximum Δn between any two jets			
$\Delta R_{ m bb}^{ m Higgs}$	ΔR between the two <i>b</i> -tagged jets with mass closest to the Higgs boson mass	~	_	_	$m_{\min}^{min} \Delta R$	Mass of the combination of the two b -tagged			_
$\Delta R_{ m bb}^{ m max m}$	ΔR between the two <i>b</i> -jets with the largest invariant mass	\checkmark	\checkmark	\checkmark	$m_{\rm bb}$	Jets with the smallest ΔR Mass of the combination of any two jets with			
$m_{ m bb}^{ m max \ p_T}$	Mass of the two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$	_	_	\checkmark	m_{jj} max p_T	the smallest ΔR Mass of the combination of a <i>b</i> -tagged jet and	_	_	
$m_{\rm bb}^{\rm Higgs}$	Mass of the two b-tagged jets closest to the Higgs boson mass	\checkmark	\checkmark	\checkmark	m_{bj}	any jet with the largest vector sum $p_{\rm T}$		×	-
$m_{\rm bb}^{\rm min}$	Minimum mass of two <i>b</i> -tagged jets	_	_	✓	PT N ^{Higgs 30}	Number of b -jet pairs with invariant mass within			
$m_{\rm bb}^{\rm min~\Delta R}$	Mass of the combination of the two <i>b</i> -tagged jets with the smallest ΔR	\checkmark	\checkmark	\checkmark	N _{bb} N ₄₀	S0 GeV of the Higgs boson mass Number of jets with $p_{\rm T} > 40 GeV$		✓	
$p_{\mathrm{T},b}^{\min}$	Minimum b-tagged jet $p_{\rm T}$	_	-	\checkmark	H^{had}	Scalar sum of jet $n_{\rm T}$	_		
$H_{\rm T}^{\rm all}$	Scalar $p_{\rm T}$ sum of all leptons and jets	_	\checkmark	\checkmark	T				
N ^{Higgs 30}	Number of b -jet pairs with invariant mass within 30 GeV of the Higgs boson mass	✓	_	\checkmark	$\Delta R_{\rm lep-bb}^{\rm min\ \Delta R}$	ΔR between the lepton and the combination of the two b-tagged jets with the smallest ΔR	_	_	\checkmark
N ^{Higgs 30}	Number of jet pairs with invariant mass within 30 GeV of the Higgs boson mass	_	√	_	Aplanarity	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor [42] built with all jets	~	 ✓ 	~
JJ Aplanarity	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [2] built with all jets	✓	✓	\checkmark	Centrality	Scalar sum of the $p_{\rm T}$ divided by sum of the <i>E</i> for all jets and the lepton	✓	 ✓ 	\checkmark
Centrality	Sum of the $p_{\rm T}$ divided by sum of the <i>E</i> for all jets and both leptons	✓	_	~	H1	Second Fox–Wolfram moment computed using all jets and the lepton	\checkmark	\checkmark	\checkmark
$H2_{iots}$	Third Fox–Wolfram moment computed using all jets	_	1	_	Variables from	n reconstruction BDT output			
Jeta	Fifth Fox-Wolfram moment computed using all jets				BDT output		√*	\checkmark^*	√*
$H4_{\rm all}$	and leptons	_	_	\checkmark	$m_{ m H}$	Higgs boson mass	\checkmark	\checkmark	\checkmark
Variables from reconstruction BDT output				$m_{\mathrm{H},b_{\mathrm{lep top}}}$	Mass of Higgs boson and b -jet from leptonic top	\checkmark	-	-	
BDT output		√*	√*	-	$\Delta R_{\rm Higgs\ bb}$	ΔR between <i>b</i> -jets from the Higgs boson	\checkmark	\checkmark	\checkmark
$m_{ m H}$	Higgs boson mass	✓ (*)	✓ (*)	_	$\Delta R_{\mathrm{H},t\bar{t}}$	ΔR between Higgs boson and $t\bar{t}$ system	√*	√*	√*
$\Delta \eta_{\mathrm{H},l}^{\mathrm{min}}$	Minimum $\Delta \eta$ between the Higgs boson and a lepton	√*	✓	-	$\Delta R_{\rm H, lep \ top}$	ΔR between Higgs boson and leptonic top	 ✓ 	-	-
$\Delta \eta_{\mathrm{H},l}^{\mathrm{max}}$	Maximum $\Delta \eta$ between the Higgs boson and a lepton	√*	✓		$\Delta R_{\mathrm{H},b_{\mathrm{had}}}$ top	ΔR between Higgs boson and <i>b</i> -jet from hadronic top	_	\checkmark^*	√*
$\Delta \eta_{\rm H,b}^{\rm min}$	Minimum $\Delta \eta$ between the Higgs boson and a <i>b</i> -jet	√*	_	_					

BDT Outputs

Closer Look

Strong handle on tt+light, ttcc and ttbb contributions

Include in fit!

Fit Results

- Need to compare starting point and results
 - Pathologies due to lack of MC stats in some areas, strong correlations, ...
- Crucial to design analysis with good control regions: fit helps address least understood systematics

ATLAS ttH search: arXiv:1503.05066

Pre- vs Post-Fit

- Start from:
 - "How well do we understand data and the SM?"
 - How confident are we in corrections we apply?
- Given that:
 - Which measurements can we make? What do we need to do to improve our understanding?
- Balance the work!
 - Early, low background searches

Complementary measurements!

- Detailed understanding/verification of SM predictions
- Increasingly complex searches
 - Tough backgrounds, hard work
 - Don't scorn multivariate and statistical tools

Extra Dimensions

- A promising approach to quantum gravity consists in adding extra space dimensions: string theory
 - Additional space dimensions are hidden, presumably because they are compactified

Source: PhysicsWorld

- Radius of compactification usually assumed to be at the scale of gravity, i.e. 10¹⁸ GeV
 - In '90 Antoniadis realized they may be much larger...

Phys.Lett.B246:377-384,1990

Warped Extra Dimensions

Simple "Randall-Sundrum model:

Randall & Sundrum, Phys.Rev.Lett. 83 (1999) 3370

- SM confined to a brane, and gravity propagating in an extra dimension
- The metric in the extra dimension is "warped" by a factor $exp(-2kr_c\varphi)$
- (Requires 2 branes)

Graviton Excitations

In RS, get a few massive graviton excitations

- Widths depend on warp factor k
- Mass separation = zeros of Bessel function

Hierarchies

Physics on a curved gravitational background:

 Scales depend on position along extra dimensions

 $M_{\rm Pl} = 2 \times 10^{18} \, {\rm GeV}$

- UV brane scale is $M_{\rm Pl} = k2 \times 10^{18} \, {\rm GeV}_{kL} \sim 30$
- IR brane scale is $\underline{M}_{PI} \stackrel{e^{-kL}}{\longrightarrow} \sim \stackrel{1}{\sim} \stackrel{TeV}{} \stackrel{TeV}{}$ if kL ~ 30

If were to localize Higgs on IR brane, naturally get EW scale ~ 1TeV (from geometry!)

<u>Flavor</u>

- Interesting variation has fermions located along the extra dimension
 - Fermion masses generated by geometry
 - Heavier fermions are closer to IR brane, and gauge boson excitations as well
 - Gauge boson excitations expected to have masses in the 3-4 TeV range (bounds from precision measurements)
 - Couple mainly to top/W/Z (!)
 - Flavor changing determined by overlap of fermion "wave function" in the ED
 - Nice suppression of FCNC etc.

(From K Agashe et al, <u>arXiv:1608.00526</u>)

Gauge Boson Excitations

ob/GeV

- Excitations of the gauge bosons are very promising channels for discovery
 - Couplings to light fermions are small
 - Small production crosssections
 - Large coupling to top, W_L,
 Z_L
 - Look for tt
 , WW, ZZ
 resonances (that can be wide)

- Signature of Randall-Sundrum excitations as well as W', Z'
 - Can look for e.g. W' \rightarrow WZ, WH
 - Many final state options: IvII, Ivqq, qqII, qqqq, ...
 - Three leptons → low background but low branching ^g
 ratio: good at low mass where backgrounds are large
 - Fully hadronic → high branching ratio but substantial multi-jet background: good at high mass where crosssection is lower
- For high mass W', Z' decay products are boosted...ok for leptonic decays,
 - ... but hadronic decay products merge:
 - $\Delta R \sim 2m/p_T \Rightarrow$ for $p_T \sim 500$ GeV, $\Delta R \sim 0.4$, typical jet

size

Fully Hadronic Decays

Decay hadrons reconstructed as a single jet

- But even if it looks like a single jet, it originates from a massive particle decaying to two (W, Z, H) or three (top) hard partons, not one
- If I measured each of the partons in the jet perfectly, I would be able to:
 - Reconstruct the "originator's" invariant mass
 - Reconstruct the direct daughter partons

But

- Quarks hadronize → cross-talk
- My detector can't resolve all individual hadrons

Jet Mass

Jet mass: invariant mass of all jet constituents

- In principle, close to object mass
- and invariant!

Jet mass is not sensitive to structure

- Can't tell whether a jet is isotropic or not
- Expect "blobs" with higher concentration of energy for jets from top/W/Z decays

- Multiple ways of exploiting this....
 - k_T splitting scales, "mass drop", ...

J. M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D65 (2002) 096014

k_T Splitting Scales

- k_T jet algorithm is much better suited to understand jet substructure than cone:
 - Cone maximizes energy in an η x φ cone
 - k_T is a "nearest neighbor" clusterer

$$y_{2} = \min \left(E_{a}^{2}, E_{b}^{2} \right) \bullet \theta_{ab}^{2} / p_{T(jet)}^{2}$$
$$Y \text{ scale } = \sqrt{p_{T(jet)}^{2} \bullet y_{2}}$$

- Can use the k_T algorithm on jet constituents and get the (y-)scale at which one switches from 1 → 2 (→ 3 etc.) jets
 - Scale is related to mass of the decaying particle

kт

- Introduced to recover
 (W/Z)H→ (W/Z)bb at the LHC
 - In boosted regime, Wbb and Zbb backgrounds easier to manage
 - But strategy can be used more generically

Decluster (or recluster with small R), and remove soft stuff

- Clean up soft QCD radiation/connection to underlying event

Proof of Principle

W-jets from top quarks

Added Benefits

Pile-up is a big deal at hadron colliders

 Low-p_T, "uninteresting" QCD will always have a much larger cross-section than rare processes we're hunting

!Optimal parameter set/strategy is detector-dependent!

Many More Techniques

- Whole "jet structure" community exists
 - Reports of BOOST workshops a very useful resource:
 - Boosted objects: A Probe of beyond the Standard Model physics, A. Abdesselam et al, <u>Eur.Phys.J. C71 (2011) 1661</u>; Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, A. Abdesselam et al, <u>J.Phys. G39 (2012) 063001</u>
 - Direct comparison of multiple taggers, and "groomers"
 - More tools have been developed, and also more extensive non-perturbative calculations of the jet structure
 - Many of the tools available in the fastjet library (Cacciari, Salam, Soyez)
 - <u>http://www.lpthe.jussieu.fr/~salam/fastjet/</u>

Diboson Resonance Results: CMS

Gustaaf Brooijmans

Diboson Resonance Results: CMS

Gustaaf Brooijmans

Diboson Resonance Results: ATLAS

Diboson Resonance Results: ATLAS

◆ Both ATLAS & CMS have analyses with b-tags → reduced acceptance

♦ CMS ZH \Rightarrow TTJ and all-hadronic VH CMS, arXiv:1506.01443

SLAC Summer Institute 2016

19.7 fb⁻¹ (8TeV)

✤ Hints for a W'?

- If it's W_R it might decay via v_R: $W_R \rightarrow \ell \nu_R^{(*)} \rightarrow \ell (\ell W_R^*) \rightarrow \ell (\ell (q\bar{q}'))$
 - Dilepton + two jets final state

CMS, Eur. Phys. J. C 74 (2014) 3149

And Dijets CMS, Phys. Rev. D 91 (2015) 052009 ATLAS, Phys. Rev. D. 91, 052007 (2015) 19.7 fb⁻¹ (8 TeV) 10⁴ 10³ $B \times A (pb)$ $\sigma \times A [pb]$ CMS String W **Excited quark** 10³ Axigluon/coloron Observed 95% CL upper limit Scalar diquark 10² **S**8 10² Expected 95% CL upper limit W' SSM х b Z' SSM 68% and 95% bands 10 RS graviton (k/M=0.1) 10 1 $\int L dt = 20.3 \text{ fb}^{-1}$ 10⁻¹ 1 E vs=8 TeV 10⁻² % CL upper lim ts 10⁻¹ 10⁻³ gluon-gluon quark-gluor 10-4 **ATLAS** 10⁻² guark-gua 10⁻⁵ 1000 2000 3000 4000 5000 3 Resonance mass (GeV) $m_{W'}$ [TeV]
And Dijets CMS, Phys. Rev. D 91 (2015) 052009 ATLAS, Phys. Rev. D. 91, 052007 (2015) 19.7 fb⁻¹ (8 TeV) 10³ 10⁴ $B \times A (pb)$ $\sigma \times A [pb]$ CMS Strina W **Excited** guark 10³ Axigluon/coloron Observed 95% CL upper limit Scalar diquark 10² 10^{2} **S8** Expected 95% CL upper limit W' SSM x b Z' SSM 68% and 95% bands 10 RS graviton (k/M=0.1) 10 1 $\int L dt = 20.3 \text{ fb}^{-1}$ 10⁻¹ 1 √s=8 TeV 10⁻² 10⁻¹ % CL upper lim ts 10⁻³ gluon-gluon quark-gluor 10^{-4} ATLAS 10⁻² guark-gua 10⁻⁵ 2000 3000 4000 5000 1000 3 Resonance mass (GeV) m_w, [TeV]

Intriguing number of 1-2 sigma excesses at ~1.9 TeV (mostly at edge of kinematic range):

- 2 in ATLAS: all-hadronic diboson, dijet
- 5 in CMS: all-hadronic, IIJ, WH diboson, W_R , dijet, dilepton

Are they all at the same mass?

Somewhat... needs 2016 data

We Should Have Excesses!

✤ Run 1:

- ATLAS: ~50 exotics + ~40 susy papers @ 8 TeV
- CMS: ~50 exotics + ~25 susy papers @ 8 TeV
- Expect ~eight false 2σ (excesses+deficits) and maybe one 3σ
- Expect ~four >2σ and 0.25 >3σ accidental excesses

✤ 3σ:

- ATLAS Z+MET
- ✤ 2+σ:
 - $H \rightarrow \mu \tau$
 - ~2 in same-sign dileptons
 - ~4 in W'/Z'-type searches
- Count is ~double...
- ✤ ... and false positives not expected to cluster...

Thanks

(and mainly: question everything!)