Results on Accelerator and Reactor Neutrinos

Brandon Eberly

August 24, 2016

Neutrinos Have Mass

More Than MET

normal hierarchy

inverted hierarchy

How Many Neutrinos are There?

•Number of weakly-active light neutrinos is well-known to be 3 (Z decay width)

 Anomalies from accelerator, reactor, and source neutrino experiments could indicate existence of sterile neutrinos

•In a 3+1 model, data points to $\Delta m^2 \sim 1$ eV² (L/E ~ 1 km/GeV) and small effective mixing angle

Anatomy of an Oscillation Experiment

1) Intense neutrino source (>10⁵ v/cm²/pulse if a beam)

2) **Massive** detector composed of heavy nuclei **FAR** away from the source

3) (Optional) near detector close to source – measure unoscillated spectrum to constrain systematics

Neutrino Sources – 2015 Nobel Prize

Sun: KeV to a few MeV: ~10¹¹/cm²/s at Earth

Cosmic Rays: GeV and higher

Neutrino Sources

Relatively high amount of Potassium 40: ~ 10 neutrinos per second, few MeV

Neutrino Sources

Relatively high amount of Potassium 40: ~ 10 neutrinos per second, few MeV

Donkey Kong's banana hoard: ~1 neutrino per cm² per second at the banana pile

Neutrino Sources

Relatively high amount of Potassium 40: ~ 10 neutrinos per second, few MeV

Donkey Kong's banana hoard: ~1 neutrino per cm² per second at the banana pile

Neutrino Sources - Reactors

•Intense flux of few MeV anti- v_e from beta decay of fission byproducts

•Can measure θ_{13} , Δm_{31}^2 , sterile neutrinos with $\Delta m_{41}^2 < 0.1 \text{ eV}^2$ (~1 km baselines)

•Can measure θ_{12} , Δm_{21}^2 (~100 km baseline)

•Only anti-neutrinos: no CP violation measurement

Brandon Eberly, SLAC

Neutrino Sources - Accelerators

•Few 100 MeV to few GeV in energy, $> 10^5 \, v_{\mu} \, / \, cm^2$ / pulse

•Change focusing horn current to produce anti-neutrinos

•Measure θ_{13} , θ_{23} , Δm_{31}^2 , δ (~100 – 1000 km baseline)

•Longer baselines allow for better resolution of the mass hierarchy

T2K Flux – H.A. Tanaka, "T2K: Latest Results", NEUTRINO 2016

T2K Experiment

ND280:

- •Off-axis near detector
- Not functionally identical to far detector, but has water targets
 Data used to tune far detector expectation

Super-Kamiokande:

•50 kton water
Cherenkov far
detector (L=295 km)
•1 km underground
•2.5° off axis

H.A. Tanaka, "T2K: Latest Results", NEUTRINO 2016

T2K Reconstruction & Analysis

Signal: single μ /e-like ring, X = single recoil nucleon (unobserved – below Cherenkov threshold)

Energy Reconstruction: assume 2-body kinematics, use E_1 , θ_1

Hadronic Recoil: Reject backgrounds (pions)

T2K-Recent Results

•Results from joint fit of v_{μ} , anti- v_{μ} disappearance; v_{e} , anti- v_{e} appearance

NOvA Experiment

Identical near and far detector technology
14 mrad off axis – 2 GeV flux peak

•810 km baseline

•Planes of PVC strips filled with liquid scintillator, layered in orthogonal views

•290 ton near detector underground at Fermilab – about the size of a doubledecker bus

•14 kton far detector on surface at Ash River, MN – largest free standing plastic structure in the world P. Vahle, "New Results from NOvA", NEUTRINO 2016

NOvA Reconstruction & Analysis

 $\bullet\nu_{\mu}$ disappearance and ν_{e} appearance

•Long baseline to help resolve Mass Hierarchy

•3-flavor NC disappearance to search for ~0.1 eV² Δm_{41}^{2}

•Uses a computer vision technique (Convolutional Visual Network) for abstract feature extraction from calibrated hit maps

•Extracted features are input to conventional neural network for event classification •Energy reconstructed using reconstructed lepton and hadronic recoil

P. Vahle, "New Results from

Brandon Eberly, SLAC

NOvA – Recent Results

•v_u disappearance: 78 events observed at Far Detector

> •Expect 473 +/- 30 with no oscillations

•Maximal mixing excluded at 2.5 o

•NC disappearance: 95 events observed at Far Detector •Expect 83.7 +/- 8.3 with no sterile oscillations

NOvA Preliminary

NOvA – Recent Results

•v_e appearance: 33 events observed at Far Detector

•Background expectation is 8.2 +/- 0.8

•Fit is constrained by NOvA v_{μ} disappearance, world average for θ_{13}

•Normal Hierarchy preferred, but IH allowed at 1σ (consistent with T2K)

•Best fit parameters • δ = 1.49 π (consistent with T2K) •sin² θ_{23} = 0.40

Daya Bay - Experiment

Z. Yu, "Status of the Daya Bay Experiment", NEUTRINO 2016

Daya Bay - Experiment

•Eight functionally-identical Gd-doped liquid scintillator detectors

Anti-v_e detected by inverse beta decay (IBD)
Prompt energy from positron shower
Delayed energy from n capture on Gd or H
80% efficiency, ~98% purity

•Neutrino energy reconstructed using prompt and delayed energy

•First experiment to exclude θ_{13} = 0 at 5 sigma

•Latest analysis has over 2.5M (300K) IBD candidates in total (at far site)

Doubles previous statistics

Daya Bay – Recent Results

Anti-neutrino disappearance

Best fit values (n-Gd):

• $sin^2 2\theta_{13} = [8.41 +/- 0.27(stat) +/- 0.19(syst)] \times 10^{-2}$ • $\Delta m^2_{32} = [2.45 (-2.55) +/- 0.08] \times 10^{-3} eV^2$ in NH (IH) •Consistent with n-H results

Daya Bay and MINOS – Sterile Neutrinos

•Joint search for a light sterile neutrino (also used Bugey-3 data)

P. Adamson et al., arXiv:1607.01177

Daya Bay and MINOS – Sterile Neutrinos

•Joint search for a light sterile neutrino (also used Bugey-3 data)

•Does not appear to exclude preferred region of the joint fit showed earlier

P. Adamson et al., arXiv:1607.01177

Future Prospects

•T2K proposes additional running and upgrades past 2021 – final results by ~2026
•Excluding δ=0 at 3-sigma if maximal (-π/2)
•Measure θ₂₃ to within 1.7° - possible to

exclude maximal mixing to ~2-sigma

•NOvA will soon get anti-neutrino data, which will help with δ and excluding maximal mixing θ_{23} •First results in 2017

•Daya Bay will run until 2020, reducing uncertainties on its mixing parameter measurements to ~3%

Future Prospects - MicroBooNE

•Short baseline accelerator experiment in Fermilab booster neutrino beam, probing ~1 eV² sterile neutrino mixing

•Use "next generation" neutrino detector technology – liquid argon TPC

Future Prospects - MicroBooNE

MicroBooNE

•In same beamline as MiniBooNE – probe the "MiniBooNE anomaly"

•Excellent particle ID to determine whether MiniBooNE anomaly is electron- or photon-like

•Started collecting data in October 2015, showed first results this summer!

Fermilab Short Baseline Neutrino Program

•Pair MicroBooNE (470m) with a near detector (SBND – 110m) and far detector (Icarus – 600m)

•Exclude most of LSND allowed region in 3+1 sterile neutrino model by 5-sigma by ~2022

First v_{μ} CC Distributions From MicroBooNE Data

Future Prospects - DUNE

DUNE:

•1.2 MW neutrino beam from Fermilab (upgradable to 2.4 MW). Wideband, peaking energy ~3 GeV

•Far detector is a 40 kt (fiducial) liquid argon TPC at the Sanford Underground Research Facility (1300 km baseline, on-axis)

•Greater than 3-sigma exclusion of δ =0 for ~70% of its possible values after 7 year run (ending ~2032)

Conclusions

Neutrino physics is entering an exciting era of precision •sub-10%-level measurements of mixing parameters!

T2K and NOvA show slight preference for Normal Hierarchy, and a tantalizing glimpse of possible maximal CP violation

MicroBooNE and the Fermilab SBN program have the potential to definitively rule out sterile neutrino anomalies, or confirm them!

DUNE has fantastic CP violation discovery potential