Some Recent Results from LHCb

Michael D. Sokoloff

University of Cincinnati on behalf of the LHCb Collaboration

August 24, 2016

Why Flavor Physics?

- Search for manifestations of New Physics at the highest energy scales by studying rare and forbidden decays and and searching for CP violation beyond that described by the Kobayashi-Maskawa phase of the CKM matrix.
 - CP violation in D⁰ mixing
 - *CP* violation in *B_s* mixing
 - direct *CP* violation in four-body Λ_b decay
- Better understand strong interactions in the Standard Model, especially its non-perturbative aspects.
 - study $K^{*+} \rightarrow \phi K^+$ and $X^0 \rightarrow J/\psi \phi$ structures in $B^+ \rightarrow J/\psi \phi K^+$
 - study character of $Z(4430)^-$ observed in $B^0 \rightarrow \psi(2S) K^+ \pi^-$
- Use cross-section measurements to probe the structure of the proton
- Probe the "hidden sector" searching for rare decays producing low mass particles with very small couplings to ordinary matter.

Flavor Constrains BSM Physics

Operator	Bounds on Λ in TeV ($c_{NP} = 1$)		Bounds on c_{NP} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	A
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	Δm_K ; ϵ_K
$(\bar{c}_L \gamma^{\mu} u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	Δm_D ; $ q/p _D$, φ_D
$(\bar{b}_L \gamma^\mu d_L)^2$	6.6×10^{2}	9.3×10^{2}	2.3×10^{-6}	1.1×10^{-6}	$\Delta m = i \sin(2\beta)$ from $B \to abK$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^{3}	3.6×10^{3}	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}, \ \sin(2\beta) \ \operatorname{Hom} \ B_d \to \psi R$
$(b_L \gamma^\mu s_L)^2$	1.4×10^{2}	2.5×10^{2}	5.0×10^{-5}	1.7×10^{-5}	A_{m-1} $\sin(\phi)$ from P) shot
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^{2}	8.3×10^{2}	8.8×10^{-6}	2.9×10^{-6}	Δm_{B_s} , $\sin(\varphi_s)$ from $B_s \to \psi \phi$

Flavor Structure in the SM and Beyond

Generic bounds without a flavor symmetry

- Table above from Isidori and Teubert, Eur.Phys.J.Plus **129**, 40 (2014). Bounds on representative dimension-six $\Delta F = 2$ operators.
- Image to the left from M. Neubert, EPS-HEP-2011.

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

Gell-Mann's original discussion of hadron properties in terms of quarks also *explicitly* suggested tetra-quark states $(qq\overline{q}\overline{q})$ and penta-quark state $(qqqq\overline{q})$ as well as "ordinary" mesons $(q\overline{q})$ and baryons (qqq). A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^{4} , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" θ] q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqq \bar{q}), etc., while mesons are made out of (q \bar{q}), (qq \bar{q} \bar{q}), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly gives just 1 and 8.

LHC Detector Acceptances for bb Production

- LHCb is a forward spectrometer, optimized for accepting both B and \overline{B} hadrons in an event;
- accepts about 10× as many triggers as ATLAS or CMS:
- $\sigma(c\,\overline{c}) \sim 20 \times \sigma(b\,\overline{b});$
- acceptance in η complements ATLAS and CMS for many electro-weak studies.

LHCb Detector [2008 JINST 3 S08005]

Michael D. Sokoloff SLAC Summer Institute Topical Conference

University of Cincinnati

Neutral Meson Oscillation and CP Violation in Mixing

for x, y ≪ 1 (valid for D⁰, not for B_s):
doubly Cabibbo-Suppressed (DCS) ≈ ∝ e^{-Γt};
pure mixing ∝ e^{-Γt} × (Γt)²
interference ≈ ∝ e^{-Γt} × Γt

Time Evolution of $D^0 \rightarrow K\pi^0$

$D^0 \rightarrow K\pi$ Samples: Prompt and Doubly-Tagged (DT)

- prompt signal trigger becomes "fully" efficient well above one lifetime;
- doubly-tagged trigger is

 independent of D⁰
 decay time;

$D^0 \rightarrow K\pi$ Mixing and CPV Measurements

$D^0 \rightarrow K\pi$ Mixing and CPV Measurements

Phenomenology of B_s Mixing and CP Violation

In the special case when the B_s decays semi-leptonically $(\overline{B}_s \to D_s^+ \mu^- X)$, there is no DCS amplitude. Thus, the WS rate results from pure mixing.

$$|\mathcal{M}|^2 \propto \frac{1}{2} e^{-\Gamma t} \left\{ |\overline{\mathcal{A}}_{\alpha}|^2 |\frac{q}{p}|^2 \left(\cosh y \, \Gamma t - \cos x \, \Gamma t \right) \right\}$$

The difference in mixing rates for $B_s \to \overline{B}_s$ and $\overline{B}_s \to B_s$ (as $p \neq q$) produces an asymmetry in the rates to these final states:

$$a_{\rm sl} \equiv \frac{\Gamma(\overline{B}_s \to f) - \Gamma(B_s \to \overline{f})}{\Gamma(\overline{B}_s \to f) + \Gamma(B_s \to \overline{f})} \approx \frac{\Delta\Gamma_s}{\Delta m_s} \tan \phi_{12s} \ ,$$

Here, $x_s \equiv \Delta m_s / \Gamma_s \gg 1$ while $y_s \equiv \Delta \Gamma_s / 2\Gamma_s \ll x_s$. As a result, the mixing period is much less than the lifetime. Tagging the flavor of a B_s when it is produced is not efficient, and measuring the time-integrated asymmetry introduces only a factor of 2 dilution in sensitivity. Hence, a_{s1}^s is calculated as

$$a_{
m sl}^s = rac{2}{1-f_{
m bkg}} ig(A_{
m raw} - A_{
m det} - f_{
m bkg} A_{
m bkg} ig) \ ,$$

where A_{det} is the detection asymmetry, f_{bkg} is the fraction of *b*-hadron background and A_{bkg} the background asymmetry.

Michael D. Sokoloff SLAC Summer Institute Topical Conference

CP Violation in B_s Mixing PRL **117** (2016) 061803

• $B_s \rightarrow D_s^{\pm} (\rightarrow KK\pi) \mu^{\mp} X$ tags flavor at decay;

- $D_s \rightarrow KK\pi$ Dalitz plot divided into three signal regions, $\phi\pi$ (900 K events), K^*K (415 K events), and non-resonant (280 K events);
- SM \Rightarrow $a_{sl}^{s} \sim 2 \times 10^{-5}$ [e.g., Lenz and Nierste, JHEP **06** (2007) 072];
- result of this analysis: $a_{s1}^s = (0.39 \pm 0.26 \pm 0.20)\%$.

 $\Lambda_b^0 o p \pi^+ \pi^- \pi^-$, $\Lambda_b^0 o p \pi^- K^+ K^-$: Physics & Signals

Michael D. Sokoloff SLAC Summer Institute Topical Conference

University of Cincinnati

Triple Product Asymmetry Math Example: $\Lambda_b^0 \rightarrow p \pi^+ \pi^- \pi^- + cc$

•
$$C_{\widehat{T}} = \vec{p}_{p} \cdot (\vec{p}_{h_{1}^{-}} \times \vec{p}_{h_{2}^{+}}) [\Lambda_{b}^{0}]$$

• $\overline{C}_{\widehat{T}} = \vec{p}_{\overline{p}} \cdot (\vec{p}_{h_{1}^{+}} \times \vec{p}_{h_{2}^{-}}) [\overline{\Lambda}_{b}^{0}]$

$$A_{\widehat{\tau}}(C_{\widehat{\tau}}) = \frac{N(C_{\widehat{\tau}} > 0) - N(C_{\widehat{\tau}} < 0)}{N(C_{\widehat{\tau}} > 0) + N(C_{\widehat{\tau}} < 0)}$$
$$\overline{A}_{\widehat{\tau}}(\overline{C}_{\widehat{\tau}}) = \frac{\overline{N}(-\overline{C}_{\widehat{\tau}} > 0) - \overline{N}(-\overline{C}_{\widehat{\tau}} < 0)}{\overline{N}(-\overline{C}_{\widehat{\tau}} > 0) + \overline{N}(-\overline{C}_{\widehat{\tau}} < 0)}$$

$$a_{P}^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right) \qquad a_{CP}^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$$

Michael D. Sokoloff SLAC Summer Institute Topical Conference

$\Lambda^0_b o p \pi^+ \pi^- \pi^-$ and $\Lambda^0_b o p \pi^- K^+ K^-$ TPAs

- $\approx 6000 \ \Lambda_b^0 \rightarrow p \pi^+ \pi^- \pi^-$ and $\approx 1000 \ \Lambda_b^0 \rightarrow p \pi^- K^+ K^-$ studied;
- Analysis performed blindly. All event selection criteria and all analysis procedures (including division of phase space into bins, defining statistical procedure to be employed, etc.) determined prior to examining data; similarly, all systematic uncertainties were evaluated prior to examining (unblinded) data.
- **globally**, no significant parity or *CP* violation observed in either sample;
- two binning schemes employed; one separates the data into disjoint subsamples according to two-body invariant masses and azimuthal angle; the other separates the data into disjoint samples using only azimuthal angle.
- locally, no significant parity or *CP* violation in $\Lambda_b^0 \rightarrow p \pi^- K^+ K^-$.

Evidence for parity and *CP* violation in $\Lambda_b^0 \rightarrow p \pi^+ \pi^- \pi^-$ LHCb-PAPER-2016-030, in preparation

• The consistency of the data with the *CP* symmetry hypothesis is found to be $p = 9.8 \times 10^{-4}$ (3.3 σ) using a well-established statistical test (R. A. Fisher, *The Design of Experiments* 1935), employing pseudoexperiments based on permuting the real data events to capture correlations.

Structure in $B^+ \rightarrow J/\psi \phi K^+$ LHCb-PAPER-2016-018 & 2016-019 Dalitz plot distributions are background-subtracted and efficiency-corrected

Michael D. Sokoloff SLAC Summer Institute Topical Conference

University of Cincinnati

Some Fit Projections for $B^+ \rightarrow J/\psi \phi K^+$ LHCb-PAPER-2016-018 & LHCb-PAPER-2016-019

$J/\psi \phi$ Amplitudes in the Default Fit Model

Contri-	sign.		Fit results	
bution		<i>M</i> ₀ [MeV]	Γ_0 [MeV]	Fit Fractions%
				16 + 2 + 6
All $X(1^{+})$				10 ± 3 $^{+}_{-2}$
X(4140)	8.4σ	$4146.5 \pm 4.5 {}^{+4.6}_{-2.8}$	$83 \pm 21 {}^{+21}_{-14}$	$13 \pm 3.2 {}^{+4.8}_{-2.0}$
ave. prior		4143.4±1.9	15.7 ± 6.3	
X(4274)	6.0σ	$4273.3 \pm 8.3 \substack{+17.2 \\ -3.6}$	$56 \pm 11 {}^{+ 8}_{-11}$	$7.1{\pm}2.5{}^{+3.5}_{-2.4}$
CDF		4274.4 $^{+8.4}_{-6.7} \pm 1.9$	$32^{+22}_{-15}\pm 8$	
CMS		4313.8±5.3±7.3	$38^{+30}_{-15}\pm16$	
All $X(0^+)$				$28\pm$ 5 \pm 7
NR $J/\psi\phi$	6.4σ			$46 \pm 11 {}^{+11}_{-21}$
X(4500)	6.1σ	$4506 {\pm} 11 {}^{+12}_{-15}$	$92{\pm}21{}^{+21}_{-20}$	$6.6 \pm 2.4 {+3.5}_{-2.3}$
X(4700)	5.6σ	$4704 \pm 10 {+14 \atop -24}$	$120{\pm}31{+42\atop-33}$	$12\pm 5^{+9}_{-5}$

ave. prior see Table 1 in LHCb-PAPER-2016-019

CDF arXiv:1101.6058

CMS Phys. Lett. B734 (2014) 261

Alternative Model for X⁰(4140) LHCb-PAPER-2016-018 & LHCb-PAPER-2016-019

- Our 1⁺⁺ assignment to X(4140) and its large width rule out an interpretation as a 0⁺⁺ or 2⁺⁺ $D_s^{*+}D_s^{*-}$ molecule.
- A threshold cusp parameterization proposed by Swanson [Int. J. Mod. Phys. E 25, no. 07, 1642010 (2016)], in which an exponential form factor, with a momentum scale (β₀) characterizes the hadron size, makes the cusp peak slightly above the sum of masses of the rescattering mesons.

• This model fits the data as well as the default amplitude model.

Michael D. Sokoloff SLAC Summer Institute Topical Conference

$B^0 \to Z^-(4430)K^+$; $Z^-(4330) \to \psi'\pi^-$; $|dc \ \overline{cu}\rangle$ PRL **112** (2014) 222002

- Amplitude fits plus model-independent analysis
- $Z^{-}(4430) \rightarrow \psi' \pi^{-}$ first observed by Belle [PRL 100 (2008) 142001]

- Background-subtracted, efficiency-corrected $m(\psi'\pi^-)$ distribution.
- Model projections of cos θ_{K*} moments up to order 4, allows for J(K*) ≤ 2, including correlated uncertainties.

Resonant Character of the $Z^{-}(4430)$

- 2⁺, and 2⁻ hypotheses are rejected by at least 9.7σ , 15.8σ , 16.1σ , and 14.6σ .
- ⇒ 4-quark resonant state

• A fit including an additional $J^P = 0^- \psi' \pi^-$ amplitude with $m = (4239 \pm 18^{+45}_{-10})$ MeV and $\Gamma = (220 \pm 47^{+108}_{-74})$ MeV improves overall χ^2 corresponding to 6σ .

Model-Independent Evidence for the $Z^{-}(4430) - I$ Phys. Rev. **D92** (2015) 112009

- "Square Dalitz plots" expose helicity structures of amplitudes.
- The $K^*(892)$ band in the left-hand plot has two lobes produced by the $P \rightarrow VP \cos\theta$ amplitude.
- The left-hand plot also has an accumulation of events near 1400 MeV which might be produced by higher mass K* amplitudes.
- The right-hand plot has an accumulation of events near 4430 MeV. It might be a reflection of features produced by K* amplitudes.

Model-Independent Evidence for the $Z^{-}(4430)$ — II Phys. Rev. D92 (2015) 112009

50/14000 W 52/12000

The $\cos \theta$ distribution in each $m(K\pi)$ bin is described in terms of Legendre polynomials up to order

$$I_{\max} = \begin{cases} 2 & m(K\pi) < 836 \,\text{MeV} & \text{Using MC experiments, the } m_{\psi(2S)\pi} \\ 3 & 836 \,\text{MeV} < m(K\pi) < 1000 \,\text{MeV} & \text{projections of the data prefer this} \\ 4 & m(K\pi) > 1000 \,\text{MeV} & \text{Legendre polynomial weighting at} \\ & \text{the } 15 \,\sigma \text{ level} \end{cases}$$

LHCb

Michael D. Sokoloff **SLAC Summer Institute Topical Conference** 4800

weighting at

To Take Away

- We are measuring the particle antiparticle differences in mixing rates at the $\pm 5\%$ level in the D^0 system and at the $\pm 0.35\%$ level in the B_s system. The limits from these measurements constrain BSM physics reach at high mass scales that complement those from direct searches.
- We have observed evidence for (direct) CP violation in Λ_b decays using triple product asymmetries.
- More than 50 years after the prediction of tetra-quark and penta-quark states, we are discovering many of these in the decays of *B*-hadrons.
- Flavor physics is fun.