

Story by

POUYA Asadi, DOROTHEA vom Bruch, ALLISON Reinsvold Hall, ABIGAIL O'Rourke, LUIGI Marchese, CHRISTIAN Weber

Imagine we have discovered a 3.5 TeV Z'...

- In the dilepton channel at the LHC (Z' $\rightarrow e^+e^-$, Z' $\rightarrow \mu^+\mu^-$)
- Cross section of **0.5 fb** in dilepton channel.
- First we need to look at what it could be different models
- Study it at the HL-LHC with ~3 ab⁻¹ of data

 $N_{events} = 0.5 \times 3000 = 1500 \pm 39 Z'$ events (assuming 100% efficiency & acceptance - unrealistic)

Questions to answer:

- Can we tell which model the Z' belongs to?
- How would we measure the couplings? What are the errors?
- What non-hadron collider measurements could be made to provide more info?

What is a Z'?

- Massive, neutral, gauge boson
- Simplest gauge group is a U(1) extension of the SM
- U(1) could come from a larger, spontaneously broken symmetry such as E_6
- Values for the charges of SM particles under the Z' motivated by different theories, e.g.:
 - GUTs
 - B-L conservation models

Which Z' is it?

- Which models predict a 3.5 TeV Z' that hasn't been excluded?
- Which models predict a cross-section ~0.5 fb?
- Does the model have Z/Z' mixing? \rightarrow interference effects show in invariant mass distribution
- Differentiate between models by measuring couplings...

this guy \rightarrow

Example 1: E6 Gauge Group

- Motivated by different String Theories or other GUTs
- The E6 gauge symmetry breaking pattern:

 $E_6 \to SO(10) \times U(1)_{\psi} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \to SM \times U(1)_{\beta}$

• Different models can be defined with different mixing of U(1) gauges

$$Q(\theta_{E_6}) = \cos(\theta_{E_6})Q_{\chi} + \sin(\theta_{E_6})Q_{\psi} \qquad 0 \le \theta_{E_6} \le \pi$$

Example 2: Sequential Standard Model

- SSM is a standard benchmark for Z' models
 - $\circ~$ Z' has same couplings as SM Z

Other models...

- Numerous other theoretically-motivated models
 - Large Extra Dimensions
 - Little Higgs Models
 - ο ..
 - Left/Right Symmetric Models
- Differ by coupling strengths to (SM) particles

ATLAS-CONF-2015-070

M [GeV]

CMS PAS EXO-16-031

Other models

• Some U(1) models and corresponding charges:

fermion	$U(1)_{B-rL}$	$U(1)_{10+x\bar{5}}$	$U(1)_{d-xy}$	$U(1)_{a+xu}$			χ	ψ	η	LR
	1 /9	1/9	0	1 / 2		q_L	$\frac{-1}{2\sqrt{6}}$	$\frac{\sqrt{10}}{12}$	1/3	$\frac{-1}{6\alpha_{LB}}$
(u_L, a_L)	1/3	$\frac{1}{3}$	$\frac{1}{2}$	1/3		u_R	$\frac{1}{2\sqrt{c}}$	$\frac{-\sqrt{10}}{12}$	-1/3	$\frac{-1}{6\alpha_{LR}} + \frac{\alpha_{LR}}{2}$
u_R	1/3	-1/3	-x/3	x/3		d _P	$\frac{2\sqrt{6}}{-3}$	$\frac{12}{-\sqrt{10}}$	1/6	$\frac{-1}{\alpha_{LR}} - \frac{\alpha_{LR}}{\alpha_{LR}}$
a_R	1/3	-x/3	1/3	(2-x)/3		$\frac{\omega_{R}}{l_{\tau}}$	$\frac{2\sqrt{6}}{3}$	$\frac{12}{\sqrt{10}}$	_1/6	$\begin{array}{c c} 6\alpha_{LR} & 2 \\ \hline 1 \\ \end{array}$
(u_L, e_L)	-x	x/3	(-1+x)/3	-1		ιL	$\frac{\overline{2\sqrt{6}}}{1}$	12 $-\sqrt{10}$	-1/0	$\overline{2\alpha_{LR}}$
e_R	-x	-1/3	x/3	-(2+x)/3		e_R	$\frac{1}{2\sqrt{6}}$	$\frac{-10}{12}$	-1/3	$\frac{1}{2\alpha_{LR}} - \frac{\alpha_{LR}}{2}$

PDG review

arxiv:0801.4389

- Effectively, new U(1) gauge that may/may not mix with SM neutral gauge bosons
- Differentiate between models: determine the gauge coupling and charges of SM fields under the new gauge

Measure the couplings Directly measure couplings to distinguish between models

<u>Decays:</u>

- Measure the decays in each channel: dilepton, hadronic
- $Z' \rightarrow dileptons$ has been measured
- For Z' \rightarrow hadrons, can look at Z \rightarrow ttbar and Z \rightarrow bbar

Observables:

- Decay Width Γ : sensitive to couplings to all final states
- A_{FB} : sensitive to parity-violating couplings on- (A_{FB}^{on}) and off-peak (A_{FB}^{off})
- Rapidity ratio, R: distinguish between the couplings to up and down quarks using a fit

Decay width

- Decay width Γ_z, can be a strong discriminant between models
- Width is sensitive to all Z' couplings, including invisible decay modes

$$\Gamma\left(Z' \to e^+ e^-\right) \simeq \left[\left(g_e^L\right)^2 + \left(g_e^R\right)^2\right] \frac{M_{Z'}}{24\pi}$$

- Total width given by sum of partial widths from all decay modes
- Can derive total cross section from Γ and partial cross section

Forward-backward asymmetry (A_{FB})

- A_{FB} is a measure of how many Z' are produced in the forward vs. backward direction
 - "forward" is the original quark direction
- Sensitive to parity-violating couplings in the model
- Statistical uncertainty Sqrt($(1 A_{FB}^2) / N$)
- Ratio of differential cross-sections: reduces systematic uncertainties
- A_{FB} vs. $M_{ee/uu}$ distributions vary by model, particularly below the mass peak \rightarrow useful tool

9

Extract couplings from observables (1)

Extract couplings from observables (2)

on-peak/off-peak forward-backward asymmetry Combinations of observables σ , A_{FB}^{on} , A_{FB}^{off} , R related to differential cross-sections: cross section central/forward rapidity ratio $F_{<} = \frac{\sigma}{2} \left(1 + A_{FB}^{\text{off}} - \frac{1 + A_{FB}^{\text{on}}}{R+1} \right); \qquad F_{>} = \frac{\sigma}{2} \frac{1 + A_{FB}^{\text{on}}}{R+1}$ $B_{<} = \frac{\sigma}{2} \left(1 - A_{FB}^{\text{off}} - \frac{1 - A_{FB}^{\text{on}}}{R+1} \right); \quad B_{>} = \frac{\sigma}{2} \frac{1 - A_{FB}^{\text{on}}}{R+1} \quad \text{calculate}$ $= \left(\begin{pmatrix} F_{<} \\ B_{<} \\ F_{>} \\ B_{>} \end{pmatrix} \right) = \left(\begin{pmatrix} \int_{F_{<}} a_{1}^{u} & \int_{F_{<}} a_{1}^{d} & \int_{F_{<}} a_{2}^{u} & \int_{F_{<}} a_{2}^{u} \\ \int_{B_{<}} a_{1}^{u} & \int_{B_{<}} a_{1}^{d} & \int_{B_{<}} a_{2}^{u} & \int_{B_{<}} a_{2}^{d} \\ \int_{F_{>}} a_{1}^{u} & \int_{F_{>}} a_{1}^{d} & \int_{F_{>}} a_{2}^{u} & \int_{F_{>}} a_{2}^{d} \\ \int_{B_{>}} a_{1}^{u} & \int_{B_{>}} a_{1}^{d} & \int_{B_{>}} a_{1}^{u} & \int_{B_{>}} a_{2}^{u} & \int_{B_{>}} a_{2}^{d} \end{pmatrix} \right) \left(\begin{pmatrix} c^{u} \\ c^{d} \\ e^{u} \\ e^{d} \end{pmatrix} \right)$ measure

 $c_a = (q_P^2 + q_I^2)(e_P^2 + e_I^2)$

 $e_a = (q_B^2 - q_L^2)(e_B^2 - e_L^2)$

11

Z' couplings to leptons: e⁺e⁻ measurements

Dominant uncertainty arises from PDFs: need an e⁺e⁻ collider to study further

Let's assume two possible scenarios:

Z' couplings to leptons: e⁺e⁻ measurements

1) Assuming lepton universality Z' couplings to the initial and final state are equal.

Good accuracy in the measurement for $m_{Z'} \ge \sqrt{s}$

v: vector coupling; a: axial-vector coupling

2) Systematic uncertainty of 0.5% for all leptonic observables

Efficiency of lepton identification of 95% for leptonic channels

Ambiguity in the signs of couplings persists.

Discrimination among models based on 95% CL contours for $(a_1)'$ and $(v_1)'$

Weak influence of the systematic uncertainties for leptonic observables

Z' couplings to quarks: experimental measurements

Quark flavour identification is more complex than lepton identification

Although the ILC vertex detectors should achieve efficiencies of 60% in b-tagging and a purity of 60%, a systematic uncertainty of no less than 1% is expected

The systematic uncertainty can limit the accuracy of (a_{a}) ' and (v_{a}) ' measurements.

Z' couplings to quarks: experimental measurements

Assuming a syst. unc. of 1% for bb observables and 1.5% cc observables, the following model separation is possible

R > 2 the model separation using the quark channel is impossible.

Ideally we would build an e^+e^- collider with sqrt(s) = 3.5 TeV

Further measurements

- Electroweak observables can be used to extract further information about the couplings to fermions and Higgs
- Neutrino-nucleus coherent scattering with ultra-low energy threshold Si and Ge detectors (~10 eV): sensitive to coupling to u/d quarks by using different atomic number detector material
- If we assume non-universal charges: test couplings to the different charges with μ -e conversion, $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $ee \rightarrow \mu\tau$, $ee \rightarrow \mu\mu$, muon anomalous magnetic moment
- Electron electric dipole moment measurements, infer amount of CP violating phase
 fine-structure constant

$$M_{Z'}^2 \sim e\left(\frac{m_e}{d_e}\right) \frac{\alpha}{4\pi} \sin(\phi_{CP})$$

 \swarrow CP-violating electron dipole moment phase

Conclusions

• Yeah, we found a Z' :-)

- Need further measurements to uniquely identify which model it belongs to
- We propose an e^+e^- collider with sqrt(s) = 3.5 TeV for further studies
 - Make use of precise knowledge of colliding beam energies
 - Polarized beam for more angular studies (forward-backward asymmetry)
- Use low-energy experimental data for further constraints

B. Trocme, "Distinguishing Z' Models at ATLAS", TeV4LHC Workshop http://indico.cern.ch/event/422441/

Daniel Hayden, Raymond Brock, Christopher Willis, "Z Prime: A Story", arXiv:1308.5874v1

F. Petriello, S. Quackenbush, "Measuring Z' Couplings at the LHC", arXiv:0801.4389v2

G. Cacciapaglia, C. Csáki, G. Marandella, A. Strumia, "The Minimal Set of Electroweak Precision Parameters", arXiv : hep-ph/0604111

S. Riemann: "Study of Z' Couplings to Leptons and Quarks at NLC", hep-ph/9610513

P. Langacker, "The Physics of Heavy Z' Gauge Bosons", arXiv: 0801.1345v3

J. L. Hewett, T. G. Rizzo, 1989, Phys. Rept. 183, 193

Story by

POUYA Asadi, DOROTHEA vom Bruch, ALLISON Reinsvold Hall, ABIGAIL O'Rourke, LUIGI Marchese, CHRISTIAN Weber

BACKUP

Question Statement

- Imagine that a new Z' boson is discovered at the LHC in the dilepton channel with a mass of 3.5 TeV & with a cross section of 0.5 fb. Many theories predict such states & the HL-LHC will eventually provide integrated luminosities of ~3 ab- 1 that can be used to learn about it. To determine which, if any, of these theories is correct we need to measure the many couplings of this Z'.
- Search the literature & survey the set of such Z' models.
- Which measurements would you make to do this and roughly what would you expect for the measurement errors?
- Can these results tell us the Z' identity uniquely among the models you've surveyed?
- What non--hadron collider measurements in the future, if any, could provide additional information?

A_{FB} Definition

Petriello et al, 2008

 ${\rm A}_{\rm FB}$ is defined as

$$A_{FB}^{y_1} = \frac{\left[\int_{y_1}^{y_{max}} - \int_{-y_{max}}^{-y_1}\right] [F(y) - B(y)] dy}{\left[\int_{y_1}^{y_{max}} + \int_{-y_{max}}^{-y_1}\right] [F(y) + B(y)] dy}$$

where y is the Z' rapidity, considered from y_1 to y_{max} , and F(y) and B(y) are given by

 $B(y) = \int_{-1}^{0} d\cos\theta \frac{d^2\sigma}{dyd\cos\theta}$

$$F(y) = \int_0^1 d\cos\theta \frac{d^2\sigma}{dyd\cos\theta}$$

and θ is the angle between the quark and electron in the Collins-Soper frame

Choose the quark direction to be the same as the Z'

EW observables @ e⁺e⁻ colliders

• Some of the most precise *EW observables are*:

$$\alpha_{\rm em}, \ \Gamma(\mu), \ M_Z, \ M_W, \ \Gamma(Z \to \ell \bar{\ell}), \ A_{FB}^{\ell}, \ A_{LR}^{\ell}, \ A_{\rm pol}^{\tau}$$

- Once measured, could be related to the following quantities:
 - Determine the charges in generation-universal model as below
 - Determine the gauge coupling

Sensitivity to Z' with neutrino-nucleus coherent scattering

From B. Dutta et al (2016) ²⁴

Distinguish between models by using # signal events

Number of resonance signal events as a function of Z' mass at the LHC with integrated luminosity of 100 fb-1 for dilepton channel. Minimum number of signal events needed to detect the resonance (5 sigma level) above the bkgrd are shown.

From P. Osland et al (2009)

Determining the Spin

Study center-edge asymmetry to determine spin of new particle. z*: a priori free value of cos theta_cm defining center and edge angular regions

From P. Osland et al (2009)

Testing models

			χ			ψ			η			LR	
$M_{Z'}$	Mdl	$\chi^2_{c,e}$	χ^2_{tot}	σ									
	χ				49	61	6.8	37	43	5.5	32	32	4.5
3	ψ	15	29	4.3				1.1	2.3	0.2	4.6	26	3.9
TeV	η	15	22	3.4	1.3	2.3	0.2				13	24	3.7
	LR	14	14	2.4	44	58	6.7	30	38	5.1			

Table 7: Pairwise χ^2 for 1 ab^{-1} , $y_1 = 0.4$, and $M_{Z'} = 3$ TeV. As before, the rows are tested against the hypothesis columns.

Assume one model is correct, find of other χ^2 model as a test, using errors of first model.

Models are fairly distinguishable at this level

 \rightarrow assume situation for 3.5 TeV Z' with 3 ab⁻¹ might be better?

Forward-backward asymmetry at 33 TeV collider

From D. Hayden et al (2013)

Different E6 Models

- χ model: special case of the T_{3R} and B L models, supplemented with additional exotic fields in the 10 + 1 of SO(10)
- Ψ model: has chiral exotics and requires three full 27-plets
- η model: occurs in Calabi-Yau compactifications of the heterotic string if E₆ breaks directly to a rank 5 group via the Wilson line mechanism
- Inert model: charge orthogonal to Q_{η} , follows from alternative E_6 breaking pattern
- Neutral model: v has zero charge, allowing a large Majorana mass or avoiding big bang nucleosynthesis constraints for a Dirac v; basically the same as the alternative left-right model
- Secluded sector model: four standard model singlets that are charged under a U(1)[']