Designing your parton shower simulation

SLAC Summer Institute, SLAC August, 2016 Stefan Höche, Stefan Prestel (SLAC)

Event generation for high-energy physics

All physics relying on high-energy scattering events rely on scattering event simulations, featuring many different phenomena:

High-energy reaction Radiation cascade Secondary scatterings

Hadronization

Parton showers

Parton shower radiation cascades describe how jets are formed in particle collisions. Jets are an essential tool in collider physics.

 \Rightarrow Good jet modelling necessary!

Construct and test your own parton shower for one (or more) high energy scattering processes!

...and improve it with a next-to-leading order QCD calculation. ...and apply it to a future lepton collider.

You will

- Learn about QCD calculations, phase space integration, and apply your knowledge of (fixed- and all-order) perturbation theory.
- Improve your Python programming skills.
- Go home with your very own parton shower generator.

Be creative with your tool!

Check out the "PS tutorial" at www.slac.stanford.edu/~shoeche/mcnet16/ws

Once you have mastered your tool, be creative with your own improvement ideas, and test your understanding!

Possible challenges for you and your group are:

- Study your improvements at a high-energy lepton collider.
- Parton showers resum large logarithms of their ordering variable to all orders in perturbation theory. If you use a different ordering variable, you perform a different all-order calculation! Use another ordering variable (e.g. the virtuality of a branching) and compare!
- Include the calculations for $e^+e^- \rightarrow Z^0Z^0 \rightarrow \text{jets}$ and $e^+e^- \rightarrow W^+W^- \rightarrow \text{jets}$. When will these more complicated electro-weak processes become important?
- Calculate tree-level MEs for $e^+e^- \rightarrow n$ gluons/partons and combine with your PS by "matrix-element + parton shower merging".

References/hints

- 1 The introductory tutorial sheet can be found on www.slac.stanford.edu/~shoeche/mcnet16/ws under the "PS tutorial" link.
- 2 You will need a Python installation, and the YODA histogramming tool if you want to produce plots. The best way to get a full-fledged software setup is to use a virtual machine (VM). The VM and instructions on how to get started can be found at www.slac.stanford.edu/~shoeche/mcnet16/
- 3 You can get a "raw" version of the supplementary Python code with svn co --username=mcnet16 --password=school \ svn://svn.slac.stanford.edu/mc/tutorials/mcnet16/ps
- 4 Follow Keith Ellis' lecture closely!
- 5 Helpful background material: MCnet event generator review: https://arxiv.org/abs/1101.2599 TASI lectures by Stefan Hoeche (very detailed!): https://arxiv.org/abs/1411.4085 ICTP lectures by Stefan Prestel (with videos!): http://www.slac.stanford.edu/~prestel/schools/2015-sao-paulo

6/6