Electron-Muon Ranger (EMR) software

François Drielsma

University of Geneva

March 29, 2016

Image: A match a ma

-

Massive structural changes and upgrade

EMREvent

 $(\vec{V}, \Delta s, \Delta t, \theta_{\rm D}, \varphi_{\rm D})$

\hookrightarrow EMREventTrackArray (mother+daughter)

 $(
ho_P^{
m MA},\,
ho_P^{
m SA},\,Q^{
m MA},\,Q^{
m SA},\,\phi^{
m MA},\,\phi^{
m SA},\,{
m TDC},$ type, track ID)

- \hookrightarrow EMRPlaneHitArray
 - (Q, TDC, Δt , samples, plane ID)
 - \hookrightarrow EMRBarHitArray

(ToT, TDC, Δt , channel ID)

 $\hookrightarrow \ \mathsf{EMRSpacePointArray}$

 $(\vec{q}, \vec{q}_G, \vec{\sigma}, Q_i^{\mathrm{MA}}, Q_i^{\mathrm{SA}}, \mathsf{TDC}, \Delta t$, channel ID)

 $\hookrightarrow \mathsf{EMRTrack}$

 $(\vec{a}^x, \vec{a}^y, \vec{O}, \theta, \varphi, \hat{\chi}^2, R, |\vec{p}|)$

 \hookrightarrow EMRTrackPointArray

 $(\vec{q}, \vec{q}_G, \vec{\sigma}, \operatorname{res}_x, \operatorname{res}_y, \chi^2, \operatorname{channel ID})$

EMR data at the Spill level

Spill

- \hookrightarrow DAQData
 - $\hookrightarrow \mathsf{EMRDaq}$
 - → DBBHitArray
 - \hookrightarrow V1731HitArray
- → ReconEventArray
 - \hookrightarrow EMREvent
- → MCEventArray
 - → EMRHitArray
- ↔ EMRSpillData
 - → EMRBarHitArray
 - \hookrightarrow EMREventTrackArray (1 per candidate)

EMREvent

Contains two EMREventTrack

- ightarrow One for the mother particle (μ , π , e)
- $\rightarrow~{\rm One}$ for the daughter e if there is one
- If a daughter is found, additional information
 - \rightarrow The coordinate of the ${\bf vertex}\;\vec{V}$ where the decay took place and the uncertainty on its measurement
 - \to The distance Δs between the mother and its decay, measures the degree of belief that the matching was correct
 - ightarrow The time difference Δt between the mother and its decay
 - \rightarrow The **polar angle** θ_D between the mother and its decay $\theta_D \in [0, \pi]$, angle with respect to the zenith $\vec{e_z}$
 - \rightarrow The **azimuthal angle** φ_D between the mother and its decay $\varphi_D \in [-\pi, \pi]$, angle with respect to \vec{e}_x in the xy plane

イロト イポト イヨト イヨト

EMREventTrack

Contains the following for a single particle (EventTrack)

- \rightarrow EMRPlaneHitArray
- → EMRSpacePointArray
- \rightarrow EMRTrack
- and a series of additional variables for PID and such
 - $\rightarrow\,$ The plane density $\rho_{\rm P}^{\rm MA}$, $\rho_{\rm P}^{\rm SA~1}$
 - ightarrow The total charge Q^{MA} , Q^{SA}
 - $\rightarrow\,$ The charge ratio $\phi^{\rm MA}$, $\phi^{\rm SA}$
 - $\rightarrow\,$ The global time TDC, time stamp of the EventTrack
 - \rightarrow The **type** of EventTrack: *mother, daughter, candidate*
 - \rightarrow The track ID (useful to identify candidates)

¹The superscripts MA, SA signify which PMT was used to reconstruct the variable, MA = multi-anode, SA = single-anode.

EMRPlaneHit

Each EMRPlaneHit (plane that recorded something) contains

- $\rightarrow~$ Integrated charge in ADC counts
- $\rightarrow~$ Time stamp TDC provided by the DBB
- \rightarrow Time between the trigger and the pulse Δt (time selection)
- \rightarrow Sampled pulse shape (output of the fADC)
- $\rightarrow~\textbf{Plane~ID}$ which refers to one of the 48 planes of the EMR
- \rightarrow An array of EMRBarHit
 - \rightarrow Time-over-threshold provided by the FEB (proportional to charge)
 - $\rightarrow~$ Time stamp TDC provided by the DBB
 - \rightarrow **Time between the trigger and the hit** Δt (time selection)
 - ightarrow Channel ID which refers to one of the 2880 channels of the EMR

(日) (周) (三) (三)

EMRSpacePoint

For each EMRBarHit one space point is reconstructed

- ightarrow 3-vector of **local coordinates** of the interaction $ec{q}$
- $\rightarrow\,$ 3-vector of global coordinates of the interaction $\vec{q_G}$
- ightarrow 3-vector of **uncertainty** on the coordinates $ec{\sigma}$
- \rightarrow Corrected **SAPMT charge** Q_i^{SA} corresponding to the channel The ADC charge is corrected for fibre attenuation and calibration
- \rightarrow Reconstructed **MAPMT charge** Q_i^{MA} corresponding to the channel Reconstructed from the time-over-threshold: $Q = \exp(a \text{ToT} + b) + c$
- \rightarrow **Time stamp** TDC provided by the DBB
- \rightarrow Time between the trigger and the hit Δt (time selection)
- $\rightarrow~$ Channel ID of the EMRBarHit

EMRTrack

With a set of space points, a **polynomial track is fitted** in xz and yz

- ightarrow Array of **parameters** $ec{a}^x$ in the xz proj. $P_x(z) = \sum_0^n a_p^x z^p$
- $\rightarrow\,$ Array of parameters \vec{a}^y in the yz proj. $P_y(z) = \sum_0^n a_p^y z^p$
- ightarrow Coordinates of the origin $ec{O}$ of the track at the entrance of the EMR
- $\rightarrow~{\bf Polar}~{\bf angle}~\theta$ at the entrance
- $\rightarrow\,$ Azimuthal angle φ at the entrance
- ightarrow Normalised chi squared $\hat{\chi}^2$ of the polynomial fit
- \rightarrow **Range** R of the particle in PS
- ightarrow Total momentum $|ec{p}|$ of the particle
- \rightarrow An array of EMRTrackPoint
 - $ightarrow ~ec{q}$, $ec{q_G}$, $ec{\sigma}$ similarly to the space points
 - ightarrow Residual with respect to the space point in the two proj. res_x , res_y
 - $\rightarrow\,$ Local chi squared χ^2 for this track point, $\chi^2=\Delta s_i^2/\sigma_i^2$
 - \rightarrow **Channel ID** of the EMRSpacePoint

Reconstruction: MapCppEMRPlaneHits

EMR readout

- Bar time-over-threshold and TDC recorded for each hit above threshold, stored **for the entire spill** in 48 DBBs
- Charge in each plane (ADC) integrated when fADC triggered

Plane hit reconstruction

- $\rightarrow\,$ DBB hits and corresponding fADC charge are matched by their temporal proximity ($\Delta t\sim200\,{\rm ns})$ and create a plane hit
- ightarrow Leftover bar hits are bunched in time and form decay candidates

Occupancy (bar hits)

Occupancy in the yz plane

ም.

François Drielsma (UniGe)

March 29, 2016 10 / 22

э

Reconstruction: MapCppEMRSpacePoints

Crosstalk Cleaning

ightarrow Only the bunch of hits with the highest charge is kept each plane

Space point formation

- \rightarrow We need to make a space point per hit, not per plane (decays)
- ightarrow The space point position is the barycentre of the bar
- $\rightarrow\,$ The want the error bar to represent the charge weighted average

$$\sigma_i = \sigma_q \sqrt{\frac{Q_P}{Q_i}} \rightarrow \hat{q} = \frac{1}{\sum_i 1/\sigma_i^2} \sum_i \frac{q_i}{\sigma_i^2} = \frac{1}{Q_P} \sum_i q_i Q_i \qquad (1)$$

Muon beam profile at the entrance of the EMR

1900 ₩ ₩ ₩ 00 18 16 300 14 200 12 100 10 n 8 -1006 -200 4 -300 2 -400 -5000 400 500 200 300 -500 -400 -300 -200 -100 0 100 x [mm]

Beam profile in the xy plane

EMR software

François Drielsma (UniGe)

MapCppEMRRecon: Track fitting

For an array of space points, a polynomial is fitted using a least squares algorithm separately in the two projections. This produces two array of parameters \vec{a}^x, \vec{a}^y for two polynomials $P_x(z), P_y(z)$

When a polynomial is fitted to the space points, their coordinates are corrected by pushing them radially to the closest point on the track

$$z'_{i} = \min_{z \in [z_{\min}, z_{\max}]} \sqrt{(z - z_{i})^{2} + (P(z) - q_{i})^{2}},$$
(2)

which creates as many track points as there was space points.

François Drielsma (UniGe)

EMR software

MapCppEMRRecon: range and total momentum $|\vec{p}|$

• The range is reconstructed from the track fitting parameters

$$R = \int_{z_{\min}}^{z_{\max}} \sqrt{1 + \left(\frac{\partial P_x(z)}{\partial z}\right)^2 + \left(\frac{\partial P_y(z)}{\partial z}\right)^2} dz$$
(3)

NB: For n = 1 (line fit): $R = \int_{z_{\min}}^{z_{\max}} \sqrt{1 + a_{x,1}^2 + a_{y,1}^2} dz$.

• The momentum is unfolded from the CSDA range, assuming PID

$$R = \int_{E_0}^0 \frac{\mathrm{d}E}{\langle \mathrm{d}E/\mathrm{d}x \rangle} = \int_{p_0/m_i c}^0 \frac{\mathrm{d}p}{\langle \mathrm{d}E/\mathrm{d}x \rangle} \beta m_i c^2 \tag{4}$$

Range reconstruction for a 'calibration' beam (π, μ, e)

 \rightarrow Very sharp **muon** peak (blue right), distinct **pion** peak (blue left) and clean **Michel electron** distribution (red).

François Drielsma (UniGe)

EMR software

March 29, 2016 15 / 22

MapCppEMRRecon: Total charge Q^{MA} , Q^{SA}

EMR total charge

MapCppEMRRecon: Charge ratio ϕ^{MA} , ϕ^{SA}

EMR charge ratio

MapCppEMRRecon: PID variables $\hat{\chi}^2$ and ρ_P

Normalised χ^2 against plane density $\rho_{_{D}}$

François Drielsma (UniGe)

March 29, 2016 18 / 22

MapCppEMRRecon: track matching

Track matching procedure

- ightarrow Find candidates that are within 10 au_{μ} of the mother
- $\rightarrow\,$ Compute the distance between the mother and the candidate
- $\rightarrow\,$ Select the closest candidate

Reconstructed variables

ightarrow Vertex $ec{V}$, distance Δs , time diff. Δt , inclination $heta_{
m D}$, azimuth $arphi_{
m D}$

Muon lifetime

Muon decay time

 $\rightarrow \tau_{\mu} = 2.218 \pm 0.066 \mu s$!

æ

<ロ> (日) (日) (日) (日) (日)

Other recent and future updates

Additional features and corrections:

- EMR quality flags in python provided to DR
- MC digi. calibrated in energy to match Step IV real data
- $\circ\,$ 100x faster MapEMRSpacePoint (multiple maps rewritten to make them more efficient), 30x faster MapEMRRecon (reduced the resolution of the momentum reconstruction to 10^{-3})
 - $\rightarrow\,$ MapEMRSpacePoint takes $\sim\,10\,\text{ms}$ for a 200 triggers spill (produces an SP for each BarHit)
 - \rightarrow MapEMRRecon takes \sim 100 ms for a 200 triggers spill (fits a track, reconstruct the pid variables, range, momentum and match daughters)

Future updates:

- Daughter fitting algorithm
- Minor reducer updates
- Fine tune the digitizer

EMR code completion

94	EMR	1		Drielsma	1.0	99	1 Apr 14	1 May 16
95		Particle ID		Drielsma	1.0	100	1 Apr 14	Done
96		Reconstruction		Drielsma	1.0	100	1 Apr 14	Done
97			Hit reconstruction	Drielsma	1.0	100	1 Apr 14	Done
98			Track reconstruction	Drielsma	1.0	100	1 Apr 14	Done
99			Range measurement	Drielsma	1.0	100	1 Apr 14	Done
100			Decay products matching	Drielsma	1.0	100	1 Apr 14	Done
101			Energy measurement	Drielsma	1.0	100	1 Apr 14	Done
102		Calibration		Drielsma	1.0	100	1 Apr 14	Done
103			Take data <u>w cosmics</u>	Drielsma	1.0	100	1 Apr 14	Done
104			Calibrate + validate	Drielsma	1.0	100	1 Apr 14	Done
105		MC		Drielsma	1.0	100	1 Apr 14	Done
106			Physics Process	Drielsma	1.0	100	1 Apr 14	Done
107			Sensitive Detector	Drielsma	1.0	100	1 Apr 14	 Done
108			Data structure	Drielsma	1.0	100	1 Apr 14	Done
109		MC Dig		Drielsma	1.0	100	1 Apr 14	 Done
110			ADC simulation	Drielsma	1.0	100	1 Apr 14	Done
111			Data structure	Drielsma	1.0	100	1 Apr 14	Done
112		DAQ Dig		Drielsma	1.0	100	1 Apr 14	Done
113		Calibration Interface		Drielsma	1.0	100	1 Apr 14	Done
114		Geometry Interface		Drielsma	1.0	100	1 Apr 14	Done
115		Reducer		Drielsma	1.0	100	1 Apr 14	Done
116		Cartesian Output		Drielsma	1.0	100	15 Apr 15	Done
117		Measurement Error		Drielsma	1.0	100	15 Apr 15	Done
118		Data Quality Flag		Drielsma	1.0	100	15 Apr 15	Done
119		Test		Drielsma	1.0	100	1 Apr 14	Done
120		Doc		Drielsma	1.0	0	1 Apr 14	1 May 16

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・