Gaussian Kernel Density Estimation (KDE) in MICE

Illinois Institute of Technology Tanaz A. Mohayai March 30, 2016

Motivation

• Solenoid beam optics prone to filamentation and other non-linear effects.

V. Kain, "Beam Transfer and Machine Protection", CERN

- Non-linearities cause the beam's distorted shape to fill larger ellipse → "apparent" emittance growth.
- Need to study alternative measures of estimating the true phase space volume occupied by the beam as opposed to RMS emittance → Kernel Density Estimation (KDE) can be used.

Background

- KDE → estimates PDF of the particle distribution in phase space using pre-defined kernel functions.
- KDE is a non-parametric DE method, defined as below (n number of points and h smoothing parameter),

R. Gutierrez Osuna, "Kernel density estimation", CSCE 666 Pattern Analysis, Texas A&M University.

• MICE has ~gaussian beam → PDF estimation using guassian kernel,

$$K(\frac{x - X_i}{h}) = \frac{1}{\sqrt{(2\pi)^d}} e^{\frac{-1}{2}(\frac{x - X_i}{h})^2}$$

Approach

- 2D KDE algorithm routine:
- → Set up a grid by separately meshing (x, x') and (y, y').
- Reshape the grid to (# dimensions, d, # points, n) for KDE evaluation. Stats.gaussian_kde() module in scipy used.
- ➤ Estimate the probability density functions of reshaped (x, x') and (y, y') grid using gaussian kernels.
- Define bandwidth method (smoothing parameter)

→ used scott's factor,
$$h = n^{\frac{-1}{d+4}}$$

- Make a contour plot where contour lines around different levels of the distribution represent the estimated density.
- → Calculate the area within the individual contour lines using Green's theorem,

$$A = \frac{1}{2} \int_c x dy - y dx$$

03.30.16

Algorithm Validation

• Generated a g4beamline gaussian beam and passed it through a vertically defocusing quadrupole magnet. Simulation parameters below,

Simulation Parameters	Values
Number of events	100,000
Quad size (iron length X radius)	457 X 381 mm
Field gradient	1.15 T/m
Field size (field length X aperture)	396 X 301.5 mm
Beam type	Gaussian
Sigma x	30 mm
Sigma y	30 mm
Sigma px	3 MeV/c
Sigma py	3 MeV/c
Reference Momentum	200 MeV/c

• Placed virtual detectors at the upstream and downstream boundaries of the field length.

Algorithm Validation cont.

(x,x')

T. Mohayai

Algorithm Validation cont.

T. Mohayai

Performance of MICE Step IV with KDE

- Simulation routine:
- Beam generation script uses MAUS and xboa routines to produce a beam input file.
 Script and config files provided by Chris Rogers.
- Beam input file is read by Pavel and Ao's MICE Step IV lattice without downstream Match coils.
 Simulation Parameters
- → Beam parameters as shown in table.

Simulation Parameters	Values
Number of events	10000
Momentum	140 MeV/c
Emittance	4.2 π mm rad
Beam type	gaussian
Sigma x	30
Sigma y	30
Sigma px	3 / 200
Sigma py	3 / 200
Average p	200 MeV/c
Number of good muons	9571

Preliminary MICE Step IV Plots – (x, px), (y, py)

 (\mathbf{X},\mathbf{X}')

Upstream

400.00

320.00

240.00

160.00

80.00

0.00

240.00

160.00

80.00

0.00

Downstream

T. Mohayai

(y,y')

Preliminary MICE Step IV Plots – (y, x), (px, y)

Upstream

320.00

240.00

160.00

0.00

400.00

80.00

03.30.16

T. Mohayai

(x',y)

Preliminary MICE Step IV Plots – (x, py), (px, py)

0.06

0.04

0.02

0.00

Downstream Py [GeV/c]

Upstream

Downstream

400.00

320.00

240.00

160.00

80.00

0.00

Looking Ahead

- Have started expanding this analysis to 4D. Phase space volume calculation in 4D under investigation.
- Try density estimation using other kernels → especially needed when beam is not fully gaussian.
- Examine the estimated desnsities using different smoothing factors.
- Extend the analysis to MICE Demonstration Step.