
### **RF Module Update**

### MICE Collaboration Meeting 44 Andrew Lambert Lawrence Berkeley National Laboratory March 30<sup>th</sup>, 2016



# **MICE Cooling Channel**





• MICE cooling channel needs two RF modules

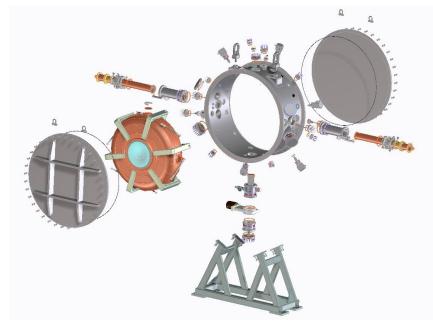
#### Each MICE RF module has

- One 201 MHz RF cavity
- Two Beryllium windows
- Two RF power couplers
- One vacuum vessel hosting the 201 MHz RF cavity
- Six tuner arms and six actuators
- Cavity support struts
- Vacuum pump system and water cooling
- Diagnostics and bypass lines



### Current Status of MICE RF Module




- Vacuum vessel for the RF Module
  - Design complete
  - In fabrication at Keller, Inc., in Buffalo, NY; near complete, expect delivery to LBNL near May 1st, 2016
- RF power coupler fabrication complete
  - Updated design addressed issues identified at MTA assembly
  - Two couplers delivered to FNAL MTA high power tested with and without B-field, meets MICE requirement
  - Four additional couplers assembled at LBNL
- New tuner actuator design, prototype and fabrication complete
  - Prototyping complete
  - Function testing (both functional and lifetime) complete
  - 12 production actuators completed + 2 spares completed
- 25 tuner arms shipped from University of Miss. to LBNL
  - Received, tuner arms modified to nominal dimensions for each cavity
- Vacuum system design (protection of Be windows) complete
  - Bypass line with limited conductance
  - Differential pressure box to protect against fault
- RF cavities
  - 4 cavities selected; 2 for operation, 2 spares
  - Cavity EP complete
  - Water-feedthrough welding complete



### Vacuum vessel



- Vessel under fabrication
  currently
  - Expected delivery to LBNL May 1<sup>st</sup>, 2016
  - Will add viewports for Be window inspection
    received from FNAL
  - Vacuum system has been re-designed for Be window protection



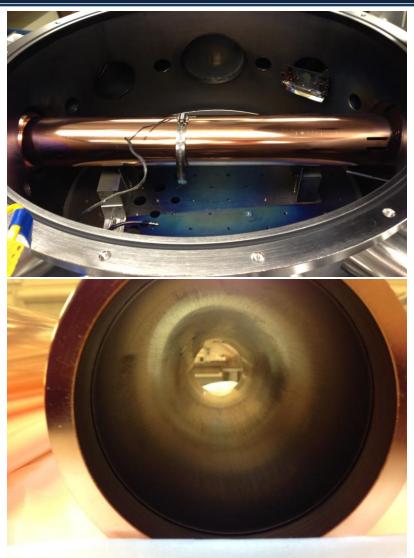
- Keller will perform leak check pre-shipment
  - -> LBNL will verify leak-tight status upon arrival
    - RGA scan as well to identify any possible contaminants (i.e. cutting fluid)
    - Steam clean if necessary
- LBNL has all the fixturing required for assembly shipped from FNAL MTA hall



## **RF** Couplers






- Completed 2 couplers
  - Sent for FNAL MTA hall for testing
- 4 additional RF couplers
  - 2 per MICE RF module
- Inside surface of outer conductor and coupling loops are TiN coated at LBNL
- Assembled couplers cleaned and ready for assembly
  - Wrapped in cleanroom paper/foil
  - Stored in clean tent
  - Not handled until assembly
- Testing complete at MTA successful





## TiN Coating of Coupler





 TiN coating process done @ LBNL

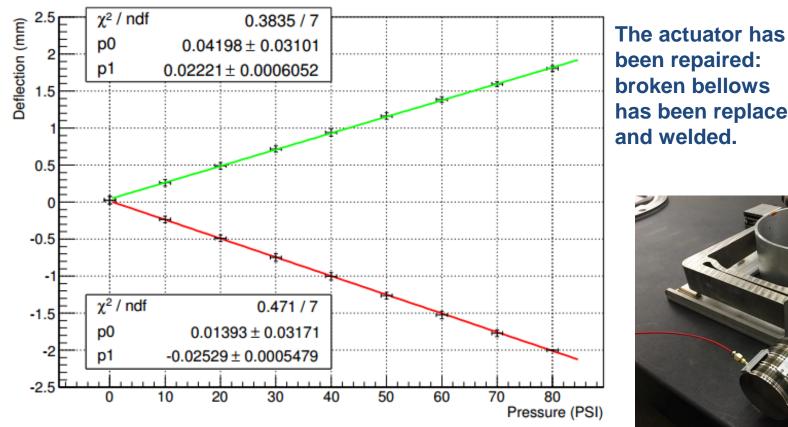




### Actuators

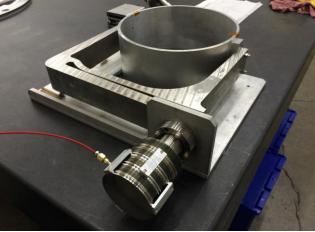


- Actuators re-designed to avoid previous issues with N2 leak into vacuum
  - N2 lines are now outside of vacuum




- Completed 12 production units
  - 2 spares
  - 2 additional units need re-work
- Prototype unit successfully fabricated and tested
- Production units cleaned, ready for assembly



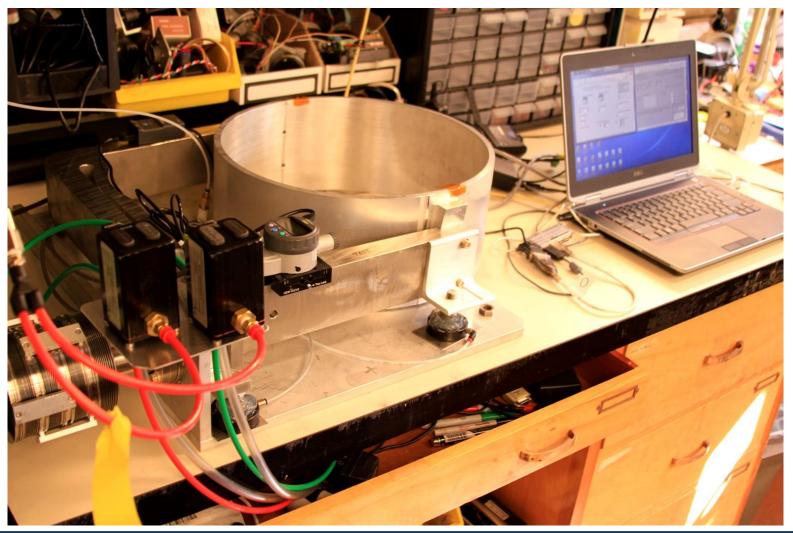



Agree well with previous testing results at Fermilab, lifetime testing started early May 2015, but a leak was developed at one of the bellows after 1200 cycles at ± 80 psi (± ~ 200 kHz). A more meaningful and realistic testing plan was developed and the testing resumed in June 2015.



broken bellows has been replaced



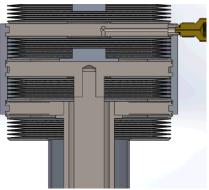




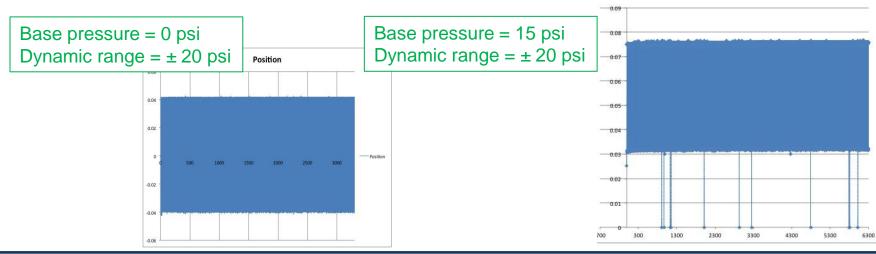

### Lifetime Testing of the New Actuator



### Testing setup at LBNL





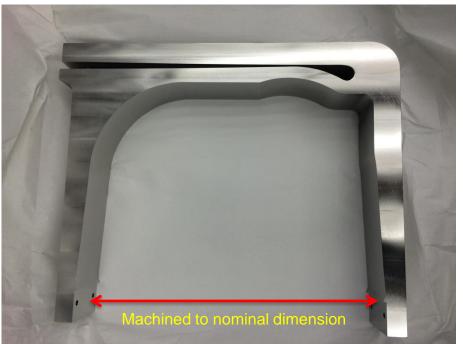


## Successful Lifetime Testing



- Lifetime testing programs
  - ± 20 psi (± 50 kHz) at base pressure of 0, 15 and 30 psi for 10,000 cycles (each compartment) + 40 hours operation
    - Base pressure equivalent to a frequency offset
    - Pressure variation → dynamic tuning
  - All 3 sets of the testing complete
    - Very smooth operation
    - No hysteresis observed
  - 40 hours lifetime test complete & successful



Position






### Tuner arms



- Received 25 tuner arms from University of Mississippi
  - Need 12 total (6 per cavity)
  - Surveyed the selected RF cavities to find nominal dimension between mount points



- Machined each set of 6 to nominal dimension, cavity specific, stamped parts to ID
- Made custom shims to help position during assembly
- UHV cleaned and ready for assembly



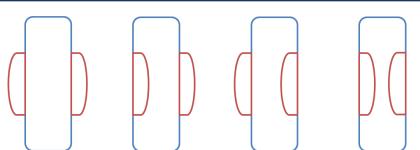
## MICE RF Cavities



#### - Cavity (with beryllium windows) selection complete

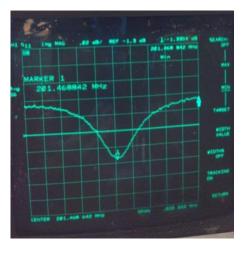
- Four cavities selected (two spares)
- In combination with different Be windows, additional ~ 100 kHz frequency tuning range
- EP of the four cavities complete
- Production cavities are stored in clean tent in assembly shop






## Frequency Measurement




• Cavity Frequency:

$$f = f_{body} \pm f_{window 1} \pm f_{window 2}$$



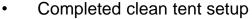
- For a cavity body and a pair of Be windows, measure three different configurations and solve f\_body and f\_windows.
- Cavity selection procedure: pick 4 cavity bodies out of 9 based on their surface conditions and body frequencies. Then pick Beryllium window pair for each body.







## **MICE RF Cavities**




- Water feedthrough welding is complete
  - Two feedthroughs per cavity
  - Vacuum and leak checks completed, weld is successful
- Cavity interiors sealed with aluminum blanks to keep inside free of contaminants/dust
  - Will not remove until installation of Be window
- Will clean exterior of cavities before installation into vacuum vessel









- Portable clean tent
- 6' x 6' changing tent need to add sticky flooring
- New curtains

m

LAB

- Increased ceiling filter coverage
- Linoleum flooring
- Need to add table with gowns, booties, gloves, etc.
- Particle count Both changing tent and clean tent passed Class 1000 standard



.....

BERKELEY



### Schedule



| Date             | Task                                                                                                                                      |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Mid April        | Complete assembly of FNAL cavity installation fixtures                                                                                    |
| Beginning of May | Receive 1 <sup>st</sup> vacuum vessel from Keller, 2 <sup>nd</sup> vessel arrives ~ 2 weeks later<br>(Originally January 2016)            |
|                  | Complete vessel leak checks, RGA scan                                                                                                     |
|                  | Begin cavity strut alignment for installation                                                                                             |
|                  | Install first cavity into vacuum vessel                                                                                                   |
| End of May       | Cavity installation complete, begin installation of RF couplers, actuators, water feed through flanges, etc.                              |
|                  | Begin installation of vacuum systems components; NEG pump and vacuum spool piece, bypass lines, pumpdown lines, differential pressure box |
| End of June      | Vacuum system pump-down, RF system testing, tuning system testing                                                                         |
|                  | Complete pre-shipment testing                                                                                                             |
| End of July      | RF module shipping prep                                                                                                                   |
| Late August      | Target date for 1 <sup>st</sup> RF module to arrive at RAL, 2 <sup>nd</sup> to arrive ~ 1 month later (Originally Mid June 2016)          |
| 30/03/2016       | MICE Collaboration Meeting 44 - RF Module Update - Andrew Lambert                                                                         |



## Summary



- LBNL has completed all fabrication steps in preparation for the RF module assembly
- Received assembly fixturing and vacuum system components from FNAL
- Vacuum vessel fabrication is near complete
- Assembly shop clean tent is setup, space is reserved
- LBNL is ready to receive the vacuum vessel and begin assembly