

MICE Run Plan

2016 ISIS User Cycle Schedule

Step IV Run Framework

2016 ISIS Run Schedule

ISIS Cycle	Date From	Date To	# Days	1 Feb 16	1 Mar 16	1 Apr 16	1 May 16	1 Jun 16	1 Jul 16	1 Aug 16	1 Sep 16	1 Oct 16	1 Nov 16	1 Dec 16
2015/04	16 Feb 16	25 Mar 16	46											
2016/01	12 Apr 16	20 May 16	38											
2016/02	28 Jun 16	29 Jul 16	31											
2016/03	13 Sep 16	28 Oct 16	45											
2016/04	15 Nov 16	16 Dec 16	31											

ISIS Cycle	Date from	Date To	Length (days)
2015/04	16 th Feb	25 th March	46
2016/01	12 th April	20 th May	38
2016/02	28 th June	29 th July	31
2016/03	15 th Sep	28 th Oct	45
2016/04	15 th Nov	16 th Dec	31

What happens to most of my run plans

April/May

Cycle 2016/01 (Apr 2016 – May 2016) : Expected to be largely focussed on QP/QD, spectrometer and SSD realignment work. Some data-taking to bolster zero-absorber data set in April if we can run (depending on chilled water workplan) and if we get shift sign-up

Feb-16		Apr-16			May-16				Jun-16			
Wk	week2	week1	week2	week3	week4	week1	week2	week3	week4	week1	week2	week3
ISIS Cycle						ISIS cycle 2016/01	Ĺ					
мом		Duty Co-	ordinator MOM (TBC)/DC.		MOM(TBC) / DC?							
Hall priority -		M	agnet re-alignme	nt/ QP&QD priorit	ty	QP/QD						
MOM or DC					-							
Absorber		LiH to safe	e storage?	Weekend runnin	g Fri-Mon 15-18,	Data-taking s	suspended QD/QP	priority/ PRY			Magnet string tr	aining/operation
				22.25 20.2	contingency	close	d. currents in ma	anets				
Power supplies			QP/QD installation		QD/QP install	QD/QP commissioning						
						contingency						
Engineering		bellows removal	Bellows Re-drill			Bellows - align				Bellows -		
			off site + step			magnets- drill to				contingency		
						template.						
Engineering2			Bellows									
_			template fab.									
Engineering3		Procure -	offset bellows? R	equires multiple (quotes. 6 weeks t	to deliver.						
Focus Coil					Focus coil prep	paration to run						
Hydrogen												
Clock!												

(latest online near-term work plan from Colin)

Data Rate Assumptions

Based on rates observed in running from this user cycle with

- ISIS @ 700 MeV
- 1.5 V/ms beamloss
- Decay solenoid on
- 30% contingency (for whatever reason)
- 66% duty factor (16 / 24 hour running)

Not using Jan/Paolo's pionic beam at the moment. Rate estimate could increase by a factor of two or more.

Measurement Time Estimate

Require (from John Nugent's study): to be a *good muon*

(Selection efficiency (11%) roughly the same to that assumed in cooling study)

1 Track
TOF 0/1/2 space points
> 8 tracker space points
27 ns < |TOF| < 30 ns

Scattering measurements require on the order of 1 x 10⁵ muons per absorber per momentum point with and without SS fields

- Data rate from previous user cycle is about 0.7 good muons / s
- Total run time for scattering measurements would be : 1.3 days

Include 30% contingency and 66% duty factor : 3 days

Step IV Measurement Program

A physics plan for STEP IV has been defined by the physics group

For each of three absorbers : empty, liquid hydrogen, lithium hydride and flip mode

Measurement		# Momentum settings	# Emittance Settings	# Muons / setting	Time (days)
1.	Scattering	3	1	100k	9
2.	Emittance scan	1	3	100k	9
3.	Grid scan	3	3	50k	12

April - May : 2016/01 (38 days) :

QP/QD installation/commissioning SSD Realignment Focus coil preparation

June - July : 2016/02 (32 days) : <u>Configuration :</u> SSU + FC + SSD M2D off Empty (FCU) absorber

> Magnet & channel commissioning (need to define this more precisely) Scattering/Energy loss baseline measurements for LiH scattering data

Run Types	Absorber	Time (days - 16 hour running)
Setup	None	1
Beamline Comm	None	15
Comm/Phys	None	21
		37/32

September / October : 2016/03 (45 days) : <u>Configuration :</u> SSU + FC + SSD + M2D ??? LH2 absorber

Liquid hydrogen absorber measurements

Should we power M2 in this user cycle?

Run Type	Absorber	Time (days - 16 hour running)			
Setup	LH2	1			
Physics w/o M2D	LH2	9			
	Switch M2D On?				
Physics	LH2	21			
	Vacuum	21			
		52/45			

November/December : 2016/04 (31 days) : <u>Configuration :</u> SSU + FC + SSD + M2D ??? LiH absorber

Lithium hydride absorber measurements

Run Type	Absorber	Time (days - 16 hour running)				
Setup	LiH	1				
Physics w/o M2D	LiH	9				
	Switch	M2D on?				
Physics	LiH	21				
		31/31				
Finish Ctar N/ data taling						

Finish Step IV data-taking

Summary

- Only a framework based on schedule as it is currently known.
- Can do scattering measurements over the next few user cycles.
- Optics group's studies show that cooling measurements are tricky without M2D.
- Do we energise M2D ? If so : when?
- The run plan necessarily must be flexible we approach this on a user cycle by user cycle basis but plan each cycle well in advance.

When is a muon "analysable"?

Choosing an ensemble of input muons

Measurement Time Estimate For Cooling analysis

Based on October 2015 run configuration:

Observed data rate : 31k muons per hour

Extra Assumptions:

Beam physics studies select 12% of this sample to generate a sample of "analyseable" muons (the fraction of muons which are selected to form a muon bunch from the full upstream sample)

To collect a sample of 10k analysable muons would take ~ 5 hours (consistent with estimates derived from Step I analyses).