

Global Track Matching and Fitting

C. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory

Track Matching and Fitting

- Seek to determine whether detector responses are consistent
 - Propagate tracks from trackers to PID detectors
 - Integrate Lorentz force law using Runge Kutta (RK4)
 - Propagate track through materials and apply mean energy loss
 - Determine whether extrapolated track corresponds to e.g. TOF hit
 - Track Matching (J. Greis)
- Seek to improve the detector reconstruction provided by individual detectors
 - Propagate tracks and errors from trackers to PID detectors
 - Integrate Lorentz force law and derivatives using RK4
 - Propagate track through materials and apply
 - Mean energy loss
 - Mean multiple Coulomb scattering increases uncertainty
 - Energy straggling (not implemented)
 - Determine likelihood that tracker track corresponds to e.g. TOF hit
 - Minimise chi²
 - Track Fitting

Track Matching (J. Greis)

- Propagate track centroid using Lorentz force law
 - $F = q (v \times B + E)$
- Energy loss in materials using Bethe Bloch

Track Matching vs Monte Carlo (J. Greis)

- Track matching is in MAUS production
 - Track matching is consistent with MC

Error Propagation thru Fields

- We have a trajectory with accelerator phase space vector (Kalman state vector) <u>u</u>in at a given measurement plane and at the next measurement plane
- Consider accelerator transfer matrix (Kalman propagator) M, defined by

$$\underline{\mathbf{u}}_{\text{out}} + \mathbf{M} \ \underline{\mathbf{du}}_{\text{in}} = \underline{\mathbf{u}}_{\text{out}} + \underline{\mathbf{du}}_{\text{out}}$$

- <u>u</u> is the and <u>du</u> is a small deviation from the vector
 - This is the first term in a Taylor series
- **M** is found by differentiating the equation of motion for $\underline{\mathbf{u}}$
- Quote

$$\underline{F} = d\underline{p}/dt = q \underline{v} \times \underline{B}$$

Then

$$dp/dz = q dx/dz \times B$$

Also

$$d\underline{x}/dz = \underline{p}/p_z$$

Derivatives of this wrt \underline{u} give the analytical transfer matrix...

Error Propagation thru Fields (2)

Consider the accelerator beam ellipse (covariance matrix) **V** with elements

$$V_{ij} = \langle u_i u_j \rangle$$

and centroid u

Then error matrix V propagates like

$$\mathbf{V}_{\mathsf{out}} = \mathbf{M} \; \mathbf{V}_{\mathsf{in}} \; \mathbf{M}^{\mathsf{T}}$$

- I want to integrate V, so I want dV/dz = [V(z+dz)-V(z)]/dz
- For small dz, $\mathbf{M} \sim \mathbf{1} + \mathbf{dM}$ so $V(z+dz)-V(z) = dM V dM^{T} + dM V + V dM^{T}$
- Note that this is a specialisation to Lorentz force law for the generalised problem of error propagation between two (sets of) variables using Jacobian
 - But generalisation of the accelerator physics transfer matrix
- The algebra is quite fiddly
- I work in coordinate system $\underline{u} = (x, y, t, px, py, total energy)_6$

Track fitting

- Track fitting is intended to be done using Kalman filter (mostly implemented, needs tuning)
 - Some seed is assumed at a tracker station with large uncertainty
 - Track is extrapolated to adjacent tracker station
 - Track is updated as weighted mean of measured position and extrapolated track
 - Mean weighted by certainty of the extrapolated track and measured position
- Coding elements of Kalman filter are implemented, but it needs some tuning
 - Lean heavily on tracker code (C. Hunt, E. Santos)
- For now I use minuit
 - Takes a long time to converge!
 - Fitted track uncertainty not properly calculated!

Fit – event display

Data (run 7475)

Fit – event display

Data (run 7475)

B₂ taken from Holge Witte field map (run 7475)

Comments

- Anecdotally, looks like the fit is essentially working
 - Black circles are space points
 - Blue line is the fitted track
 - Blue triangles are points on fitted track
- Note these events were the first and second events that met following quality criteria:
 - 1 space point in TOF0, 1, 2
 - 5 triplets in TKU and TKD (ignore doublets)

Run 7469 (V. Blackmore)

MICE

- Analysis of run #7469
 - Can we propagate TKU to TOF0/TOF1 and see reasonable results?
 - Are the measured TOF and tracker consistent?
 - Here I use track propagation including error propagation
- So far, cuts included are (V. Blackmore)
 - Single TOF0 and TOF1 calibrated space point
 - Good TOF01 track
 - TOF01 cut
 - TKU single track with hit in 5 stations
 - TKU p-value
- Victoria will present tomorrow
- No tracker vs TOF01 cut
- Discovered problem with MAUS geometry (F. Drielsma)
 - Incorrectly defined quadrupoles
 - Too short
 - Wrong z position
 - Fix not implemented in plots that follow...

Run 7469 - Raw TOF01 vs TKU

Run 7469 - TOF1

Run 7469 - TOF0

Run 7469 – TOF0

- Of 53452 total recon events
 - 32217 were successfully extrapolated
 - 25817 were in cuts
 - 25811 were in cuts AND successfully extrapolated
- Note there is some inconsistency in the event counts (to debug)
- Nb: gaussian fit to peak near 0
 - Mean = 0.80 s.d.
 - Sigma = 0.87 s.d.

Conclusions

- Track matching routines have been added to MAUS (J. Greis)
 - Propagation of tracks through fields
 - Propagation of tracks through materials
 - Show good agreement with MC
- Error propagation routines have been implemented
 - Propagation of errors through fields
 - Propagation of errors through materials
 - Partial implementation of track fitting, needs tuning
 - Not yet in production
- First pass comparison of TKU with TOF01 has been performed
- To do:
 - Implement energy straggling (Fano model)
 - Generalised track fitting using Kalman filter
 - Many minor code cleanup tasks
 - Extend testing, documentation
 - Push code to production
 - Use fixed MAUS quad model (currently in preproduction)