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Track Matching and Fitting

. . A
Seek to determine whether detector responses are consistent

= Propagate tracks from trackers to PID detectors

= |ntegrate Lorentz force law using Runge Kutta (RK4)

= Propagate track through materials and apply mean energy loss

= Determine whether extrapolated track corresponds to e.g. TOF hit
= Track Matching (J. Greis)
Seek to improve the detector reconstruction provided by
individual detectors

= Propagate tracks and errors from trackers to PID detectors
Integrate Lorentz force law and derivatives using RK4

Propagate track through materials and apply
= Mean energy loss
= Mean multiple Coulomb scattering - increases uncertainty
= Energy straggling (not implemented)
Determine likelihood that tracker track corresponds to e.g. TOF hit
Minimise chi?
Track Fitting 2



Track Matching (J. Greis)

= Propagate track centroid using Lorentz force law
= F=q(vxB + E)
= Energy loss in materials using Bethe Bloch

J. Greis
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Track matching is in MAUS production

= Track matching is consistent with MC
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Track Matching vs Monte Carlo (J. Greis)
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at the next measurement plane

Consider accelerator transfer matrix (Kalman propagator) M,
defined by

uout_I_M d—uin = uout_|_d—uout
u is the and du is a small deviation from the vector
= This is the first term in a Taylor series

M is found by differentiating the equation of motion for u
Quote

F=dp/dt=qvxB
Then

dp/dz = q dx/dz x B
Also

dx/dz = p/p,

Derivatives of this wrt u give the analytical transfer matrix...



Error Propagation thru Fields (2)

Consider the accelerator beam ellipse (covariance matrix) V
with elements

Vij = <uu>
and centroid u
Then error matrix V propagates like
vout = M vin MT
| want to integrate V, so | want dV/dz = [V(z+dz)-V(z)]/dz
For small dz, M ~ 1+dM so
V(z+dz)-V(z) =dMVdM"+ dMV + VdMT

Note that this is a specialisation to Lorentz force law for the
generalised problem of error propagation between two (sets of)
variables using Jacobian

= But generalisation of the accelerator physics transfer matrix
The algebra is quite fiddly
| work in coordinate system u = (x, vy, t, px, py, total energy) .



Track fitting

= Track fitting is intended to be done using Kalman filter (mostly
Implemented, needs tuning)
= Some seed is assumed at a tracker station with large uncertainty
= Track is extrapolated to adjacent tracker station
= Track is updated as weighted mean of measured position and

extrapolated track
= Mean weighted by certainty of the extrapolated track and measured

position
= Coding elements of Kalman filter are implemented, but it needs

some tuning
= Lean heavily on tracker code (C. Hunt, E. Santos)

= For now | use minuit
= Takes a long time to converge!
= Fitted track uncertainty not properly calculated!



Fit - event display

Data (run 7475)
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Fit - event display

Data (run 7475)
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Bz

= B taken from Holge Witte field map (run 7475)
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Comments

= Anecdotally, looks like the fit is essentially working
= Black circles are space points
= Blue line is the fitted track
= Blue triangles are points on fitted track
= Note these events were the first and second events that met
following quality criteria:
= 1 space pointin TOFO, 1, 2
= 5 triplets in TKU and TKD (ignore doublets)
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Run 7469 (V. Blackmore)

= Analysis of run #7469
= Can we propagate TKU to TOFO/TOF1 and see reasonable results?
= Are the measured TOF and tracker consistent?
= Here | use track propagation including error propagation

= So far, cuts included are (V. Blackmore)
= Single TOFO and TOF1 calibrated space point
= Good TOFO01 track
= TOFO1 cut
= TKU single track with hit in 5 stations
= TKU p-value

= Victoria will present tomorrow
= No tracker vs TOFO1 cut

= Discovered problem with MAUS geometry (F. Drielsma)

= |ncorrectly defined quadrupoles
= Too short
= Wrong z position
= Fix not implemented in plots that follow... 12
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Run 7469 - TOF1
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Run 7469 - TOFO

tof0: x
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Run 7469 - TOFO
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= (Of 53452 total recon events
= 32217 were successfully extrapolated
= 25817 were in cuts
= 25811 were in cuts AND successfully extrapolated

= Note there is some inconsistency in the event counts (to debug)
= Nb: gaussian fit to peak near O

= Mean = 0.80 s.d.

= Sigma = 0.87 s.d. 16
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Conclusions RAYAG
Track matching routines have been added to MAUS (J. G e/
= Propagation of tracks through fields
= Propagation of tracks through materials
= Show good agreement with MC

Error propagation routines have been implemented

= Propagation of errors through fields

= Propagation of errors through materials

= Partial implementation of track fitting, needs tuning

= Not yet in production

First pass comparison of TKU with TOFO1 has been performed
To do:

= Implement energy straggling (Fano model)

= Generalised track fitting using Kalman filter

= Many minor code cleanup tasks

= Extend testing, documentation

= Push code to production

= Use fixed MAUS quad model (currently in preproduction) 17
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