

Grid operations in 2015

T1/T2 workshop - 6th edition - Bergen

18 April 2016 Latchezar Betev

T1/T2 workshops

The ALICE Grid sites today

New sites

- ORNL since August 2015 (replaces LLNL)
- Bandung and Cibinong since August 2015
- CBPF since December 2015
- Vienna since April 2016
- Wuhan (back) since September 2015
- ALICE HLT cluster
- Altaria (see

Maarten's talk)

Torino workshop record

Current record

- "Order of magnitude" record
- Next order (1 Mio) projected in 2034... if we keep the same pace

CPU resources evolution

Resources evolution – regional comparison

Region	2014	2015	Difference [%]
Africa	380	760	+100
Asia	3500	4580	+31
Europe	36340	52070	+43
North America	2100	2520	+20
South America	680	1433	+110

Resources evolution

- From 2012 to 2015 CPU increase
 - 2015 2.5x the power in 2011
 - @26% average per year above the WLCG projection
 - Above-flat budget capacity increase
- This is all excellent news!

- More potential (opportunistic) CPU resources to come from supercomputers
 - See Pavlo's talk

2015 RAW data collection

Status of 2015 data processing

- Muon+Calo cycles (reduced detector set)
 - Good for muon analysis and calorimeter calibration
 - All periods completed (including Pass2)

Production	Description	Status	Run Range	Runs	Chunks	Size	Chunks	Size		Events
LHC15m_muon_calo_pass2	LHC period LHC15m - Muon+Calorimeters reconstruction pass 2	Completed	243374 - 243984	23	5,175	1.329 TB	5,154	9% 150.8 GB	11%	11,934,877
LHC15k_muon_calo_pass2	LHC period LHC15k - Muon+Calorimeters reconstruction pass 2	Completed	238682 - 239144	48	77,916	121.6 TB	77,163	9% 1.35 TB	1%	85,223,329
LHC15n_muon_calo_pass2	LHC period LHC15n - Muon+Calorimeters reconstruction pass 2	Completed	244340 - 244628	27	75,647	121.2 TB	75,541 99	9% 3.466 TB	2%	186,242,616
LHC15g_muon_calo_pass2	LHC period LHC15g - Muon+Calorimeters reconstruction pass 2	Completed	227750 - 231568	159	151,666	222.7 TB	147,054	5% 2.254 TB	1%	131,882,789
LHC15h_muon_calo_pass2	LHC period LHC15h - Muon+Calorimeters reconstruction pass 2	Completed	232465 - 234057	172	404,756	523.8 TB	402,662	9% 11.34 TB	2%	956,547,719
LHC15l_muon_calo_pass2	LHC period LHC15I - Muon+Calorimeters reconstruction pass 2	Completed	239319 - 241544	170	497,522	807.1 TB	486,593	7% 8.944 TB	1%	427,740,933
LHC15j_muon_calo_pass2	LHC period LHC15j - Muon+Calorimeters reconstruction pass 2	Completed	236892 - 238622	224	525,353	764.9 TB	518,265	3% 12.96 TB	1%	798,344,183
LHC15i_muon_calo_pass2	LHC period LHC15i - Muon+Calorimeters reconstruction pass 2	Completed	235196 - 236866	201	857,570	1.324 PB	851,534	9.117 TB	0%	587,758,874
LHC15o_muon_calo_pass1	LHC period LHC15o - Muon+Calorimeters reconstruction pass 1	Completed	244824 - 246994	190	2,011,443	2.438 PB	2,009,745	38.16 TB	1%	581,595,428
LHC15n_muon_calo_pass1	LHC period LHC15n - Muon+Calorimeters reconstruction pass 1	Completed	244340 - 244628	27	75,647	121.2 TB	75,436	9% 4.38 TB	3%	185,867,613
LHC15m_muon_calo_pass1	LHC period LHC15m - Muon+Calorimeters reconstruction pass 1	Completed	243374 - 244284	24	5,445	1.397 TB	5,174 9	5% 208.7 GB	15%	11,984,275
LHC15l_muon_calo_pass1	LHC period LHC15I - Muon+Calorimeters reconstruction pass 1	Completed	239319 - 241544	170	497,522	807.1 TB	460,504 93	2% 17.91 TB	2%	405,211,740
LHC15k_muon_calo_pass1	LHC period LHC15k - Muon+Calorimeters reconstruction pass 1	Completed	238682 - 239144	48	77,916	121.6 TB	77,906	9% 1.7 TB	1%	86,010,725
LHC15j_muon_calo_pass1	LHC period LHC15j - Muon+Calorimeters reconstruction pass 1	Completed	236892 - 238622	224	525,353	764.9 TB	524,572	9% 16.83 TB	2%	811,327,388
LHC15i_muon_calo_pass1	LHC period LHC15i - Muon+Calorimeters reconstruction pass 1	Completed	235196 - 236866	202	857,870	1.324 PB	847,062	8.916 TB	0%	629,905,933
LHC15h_muon_calo_pass1	LHC period LHC15h - Muon+Calorimeters reconstruction pass 1	Completed	232465 - 234057	172	404,756	523.8 TB	394,648 9	7 <mark>%</mark> 9.467 TB	1%	935,304,148
LHC15g_muon_calo_pass1	LHC period LHC15g - Muon+Calorimeters reconstruction pass 1	Completed	227750 - 231568	159	151,666	222.7 TB	148,503 9	7 <mark>%</mark> 2.239 TB	10,0	153,982,393
					7,203,223	10.09 PB	7,107,516	149.4 TB	6,	,986,864,963

Status of 2015 data processing (2)

- Substantial IR-induced distortions in the TPC
- Affect both p-p and Pb-Pb data
- Sophisticated correction algorithms development in the past 6 months
- Data reconstructed partially (first physics, Lower IR runs)
- Bulk of reconstruction still pending

MC generation

- 150 individual MC cycles
 - Most of these for physics papers in preparation
 - "First physics" analysis of 2015 data
- Total of 2,790,430,404 events
- As for RAW data processing, the bulk of 2015
 MC is still to be run
 - Both p-p and Pb-Pb

... and back to resources - disk

- Overall increase of disk in 2015 15%
 - This is a lot less tan the 43% CPU increase, but OK
- "golden ratio" is 3/1, i.e. 3cores/1TB disk,

Region	Cores	Installed disk [TB]	Ratio (lower is better)
Africa	760	100	7.6
Asia	4580	1480	3.1
Europe	52070	22000	2.3 (CERN EOS++)
North America	2520	2000	1.26 (ORNL EOS)
South America	1433	200	7.2

Disk storage

- From a "cloud" view the ratios are more or less OK
- There is a site by site disparity
 - Compensated in the "cloud"
 - Absence (or inadequate capacity) on individual sites hurts efficiency – sites should make an effort to keep to the ratio 3/1 as close as possible
 - Remote sites (with respect to the bulk) SEs are receiving less data
- Network is a factor, despite the continuous readjustment of 'storage discovery' algorithms
 - This is addressed in the case of Asian sites by common network initiatives – "Asia-Tier workshop @KISTI"

Disk storage (2)

- The global disk space needed for the 2015 data processing will be about 5-6PB (RAW + MC)
 - This is taking into account the new 'single ESD replica' scenario
 - We will be able to run everything within the currently available disk + the foreseen increase in 2016

Popularity and cleanup

ALICE number of accesses in time X

- Cleanup consists of removing really old MC productions (done) and second ESD replica for productions with low
- access
- List of productions to be sanitized is available and data will be removed as necessary

Catalogue stats

- Substantial increase of files in a data taking year
 - Partially due to new procedures and tasks associated with RAW data processing
 - So far no issues with catalogue (see Miguel's talk)

Wall time resources share 2016

Individual analysis: 6%

@all centres

460 users

Organized analysis: 15%

@all centres

Share ~same as in 2015:

RAW 3->9%

Ind.users-> 12->6%

Organized analysis

Individual analysis

Analysis evolution

- From 2012 to 2015 the individual user analysis has decreased by 57%
- The organized analysis share of total resources remains the same (@15%), increases in absolute terms (57% in 2015)
- The number of individual users has remained steady at ~450

Grid efficiency evolution

- Efficiency is ~flat
- Decrese in 2015 largely attributable to specific RAW data reconstruction cycles
 - Decrease in individual analysis helps to compensate the lower RAW reco efficiency
- Specific effort to increase the efficiency of calibration tasks
 - Part of the new calibration suite development
- In general, ~85% efficiency is perhaps the maximum we can expect

Storage availability

Storage availability evolution

- SE stability is still improving
 - SEs are independent, no correlation in downtime
- 9 of 62 SEs are below 90% availability
 - <5% of the total capacity</p>
- 15 of 62 (25%) below the target 95% availability
 - <15% of the total capacitry</p>
- The average availability is pulled down by small SE
 - Hence the effect on analysis is minimal
- Replica model is changing to 1 ESD copy only
 - The analysis is AOD-mostly (last groups are moving to AODs now)
 - Saving of about 20% of disk

Storage use

Write +30% Read +23%

Ratio 9.2

Year on year change

Storage use evolution

- New, more refined, storage monitoring
 - Server side, client side (both local and remote)
 - Check it out!
- Read volume increase proportional (but not equal) to the increase of analysis activities
 - Less individual, more organized, more AODs
- Cleanup remains a constant activity
 - 'Orphan files' not in the catalogue < 1%
 - Deletion of files and replica reduction as needed

Summary

- 2015 was (yet another) very successful year for Grid operations
- Spectacular data taking (all RAW data safe)
- Impressive resources increase and delivery
 - No (or negligible) effect of site upgrades
- Efficiency remains high, site stability remains high
- New projects started, in line with the ALICE upgrade plans (some covered in subsequent presentations)
- The operation is smooth all 'pilots' know their 'equipment'
- On track for the second year of LHC Run2

Thank you to all who contributed to 2015 being another great Grid year!

Thanks to all speakers

For those who still did not do it – please upload your presentations

Tusen takk to our Bergen hosts

Let's continue...