Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

Malte Backhaus, Physikalisches Institut, Universität Bonn, On behalf of the ATLAS IBL collaboration

Two sensor concepts under investigation.

→ New 3D silicon sensor technology (3D).

ATLAS IBL Upgrade

New Insertable B-Layer Upgrade installation planned for 2013 LHC shutdown.

- → Recover from eventual failures in present pixel system, esp. B-Layer.
- → Ensure excellent tracking, vertexing and b-tagging performance during LHC phase I.
- → Add to robustness of tracking with high luminosity pile-up.
- IBL design values: Peak luminosity 2-3x10³⁴ cm⁻²s⁻¹, integrated luminosity 700 fb⁻¹, fluence 5x10¹⁵ neq cm⁻², dose 250 MRad.

pixel FE

FE-I4 IC Architecture

Technology:

CMOS 130 nm feature size process and

thin gate oxide transistors for radiation hardness.

Geographical Design:

Large IC (20.2x18.8 mm²) enables simplified module concept.

- Active area holding 80x336 pixels.
- Periphery with ~2mm height.
- → Active / Inactive area fraction is 90%.

Analog Front End:

19 mm

4-pixel digital region:

Transport of hits to periphery is the limiting factor for high hit occupancies in FE-I3. New digital hit processing architecture developed for FE-I4:

- Hits stored on pixel level.
- Single latency counter for 4 analog pixels mirrors clustered nature of real hits.

FE-I4A:

First full scale prototype chip with this architecture.

Different flavours of the pixel cell have been implememented:

Another feedback capacitor in 19 out of 80 columns, low power discriminator in 2 columns and 15 columns with SEU hard pixel memory cells.

→ FE-I4B will be the experiment chip for IBL.

Low Threshold Operation

NOcc: Noise hit probability per pixel within 25ns; NOcc rises below threshold of 1200e. 1-2% dead pixel fraction independent from sensor technology seen in electronic devices irradiated to fluence: 5x10¹⁵neq. & FE dose >> 800 Mrad (300 Mrad design TID).

IC and Module Performance

Saturation of pulse amplitude. Reason known and will be fixed in FE-I4B.

Pulse injection possible in 1/8 and single DC mode.

→ decreases scan speed.

- Reference current DAC needs to be adjusted on every chip to design value of Iref = $2 \mu A$. DAC setting can be burned to EFUSE register. • 2μA Iref on edge of dynamic DAC range.
- → Dynamic DAC range will centered in FE-I4B.

Calibration of the FE-I4

Get known spectra without using analog hit information (ToT) - calibration constant dependent.

- → Measure rate and change threshold DAC, measure threshold at peak DAC position.
- → Calculate injection capacitance.

Result:

- C_{ini} = 6.7 fF, 1.13 times larger then simulated (5.7 fF).
- Expected uncertainty of order 10%.
- Independent measurement confirmed this result.
- → Absolut discriminator threshold is known with 10% accuracy.

FE-I4A based prototype modules successfully operated at thresholds ~1600 electrons in IBL test beam conditions (IBL test beam – June 2011).

