9th International Conference on Position Sensitive Detectors Aberystwyth 12th - 16th September 2011

Performance of the present ALICE Inner Tracking System and studies for the upgrade

Giacomo Contin Universita' degli Studi di Trieste & INFN Sezione di Trieste

On behalf of the ITS collaboration in the ALICE experiment at LHC

Summary

- System overview and tasks
- Hardware features
- Physics performance in p-p and Pb-Pb
- Outlook on the ITS upgrade studies

The ALICE experiment

Dedicated heavy ion experiment at LHC

- Study of the behavior of strongly interacting matter under extreme conditions of high energy density and temperature
- Proton-proton collision program
 - Reference data for heavy-ion program
 - ✓ Genuine physics (momentum cut-off < 100 MeV/c, excellent PID, efficient minimum bias trigger)</p>

Barrel Tracking requirements

- Pseudo-rapidity coverage $|\eta| < 0.9$
- Robust tracking for heavy ion environment
 - Mainly 3D hits and up to 150 points along the tracks
- Wide transverse momentum range (100 MeV/c – 100 GeV/c)
 - ▶ Low material budget (13% X₀ for ITS+TPC)
 - Large lever arm to guarantee good tracking resolution at high p_t

PID over a wide momentum range

 Combined PID based on several techniques: dE/dx,TOF, transition and Cherenkov radiation

The ALICE Inner Tracking System

The ITS tasks in ALICE

- Secondary vertex reconstruction (c, b decays) with high resolution
 - Good track impact parameter resolution $< 60 \mu m (r\phi)$ for $p_t > 1 \text{ GeV/c}$ in Pb-Pb
- Improve primary vertex reconstruction, momentum and angle resolution of tracks from outer detectors
- Tracking and PID of low p_t particles, also in stand-alone
- Prompt L0 trigger capability <800 ns (Pixel)</p>
- Measurements of charged particle pseudo-rapidity distribution
 - First Physics measurement both in p-p and Pb-Pb

Detector requirements

- Capability to handle high particle density
- Good spatial precision
- High efficiency
- ► High granularity (≈ few % occupancy)
- Minimize distance of innermost layer from beam axis (mean radius ≈ 3.9 cm)
- Limited material budget
- Analogue information in 4 layers (Drift and Strip) for particle identification in $1/\beta^2$ region via dE/dx

ITS: 3 different silicon detector technologies

The ITS parameters

Layer	Det.	Radius Length (cm) (cm)	Surface (m2)	Chan.	Spatial precision (mm)		Cell (µm2)	Max occupancy central PbPb	Material Budget	Power dissipation (W)		
						rφ	z		(%)	$(\% X/X_0)$	barrel	end-cap
1	CDD	3.9	28.2	0.21 9.83	0.014	9.8M 12	100	50x425	2.1	1.14	- 1.35k	30
2	SPD	7.6	28.2		9.8M				0.6	1.14		
3	CDD	15.0	44.4	1.21	31 133 35	25	35 25	202x294	2.5	1.13	1.06k	1.75k
4	SDD	23.9	59.4	1.31		33			1.0	1.26		
5	5 6 SSD	38.0	86.2	5.0	2.04	4 20	20 830	95x40000	4.0	0.83	- 850	1.15k
6		43.0	97.8	5.0	2.6M	20			3.3	0.86		

SPD - Silicon Pixel Detector

5 Al layer bus

Ladder1

+ extender + 3 fiber links

Layer	Radius (cm)	# half- staves	Ladders/ half-stave	# ladders	
1	3.9	40	2	80	l
2	7.6	80	2	160	

Grounding foil

Ladder2

- ✓ Total surface: ~0.24m²
 - ✓ Power consumption ~1.4kW
 - ✓ Evaporative cooling C₄F₁₀
 - ✓ Operating at room temperature

extender

- ✓ Fast two-dimensional readout (256µs)
- ✓ High efficiency (> 99%)
- ✓ L0 trigger capability
- ✓ Material budget per layer ~1% X₀

SDD - Silicon Drift Detector

Layer	Radius (cm)	# ladders	Mod./ladder	# modules	
3	15.0	14	6	87	
4	23.9	22	8	176	

Front-end electronics (4 pairs of ASICs)

- Amplifier, shaper, I 0-bit ADC, 40 MHz sampling
- Four-buffer analog memory

SSD - Silicon Strip Detector

Layer	Radius (cm)	# ladders	Mod./ladder	# modules	
5	38.0	34	22	748	
6	43.0	38	25	950	

6 front-end chips HAL25

water cooled

Sensor:

double sided strip:
768 strips 95 um pitch
P-side orientation 7.5 mrad
N-side orientation 27.5 mrad

Tracking strategy and performance

"Global"

- Vertex with SPD (tracklets method)
- Seeds in outer part of TPC @lowest track density
- Inward tracking from the outer to the inner TPC wall 3.
- Matching the outer SSD layer and tracking in the ITS
- Outward tracking from ITS to outer detectors $\rightarrow PID$
- Inward refitting to ITS \rightarrow Track parameters OK
- Refining vertex with optimal resolution (tracks method)

ALI-PERF-6582

Seed Way in in TPC Track 1. TPCin TRD

"ITS stand-alone"

- Recovers not-used hits in the **ITS** layers
- Aim: track and identify particles missed by TPC due to p_r cut-off, dead zones between sectors, decays
 - \triangleright p_t resolution < \approx 6% for a pion in p_r range 200-800 MeV/c
 - > p_t acceptance extended down to 80-100 MeV/c

10

TPC-ITS prolongation efficiency

(for π)

Vertex reconstruction

Vertex from SPD tracklets

Procedure:

- "SPD Vertex" from all possible pairs of 2 aligned hits, in a fiducial window (in ϕ , η)
- "SPD tracklet" defined by a pair of hits aligned with the reconstructed vertex

Used to:

- Monitor the interaction diamond position quasi-online
- Initiate barreland muon arm tracking
- Measure charged particle multiplicity
 - > High efficiency & poorer resolution

- Vertex spread distribution in p-p: comparison of the two methods
- The asymptotic limit estimates the size of the luminous region, seen for the vertices reconstructed with tracks.

Vertex from reconstructed tracks

Procedure:

- Straight line approximation of the reconstructed tracks in the vicinity of the vertex.
- More accurate vertex with optimal resolution

Used to:

- Reconstruct secondary vertices
- Estimate the vertex resolution
 - > Poorer efficiency & high resolution

Vertex reconstruction: Resolution

Vertex resolution in Pb-Pb collisions at $\sqrt{s} = 2.76 \,\text{TeV}$ as a function of half of the tracklets multiplicity of the event

ALI-PERF-3886

Vertex resolution estimation in Pb-Pb

Method to evaluate resolution on the vertex position:

- The track sample is randomly divided into two
- A primary vertex is reconstructed for each of the sub-sample
- The difference between this two vertices is the measure of the resolution as a function of the half tracklets multiplicity
- The resolution is extrapolated for most central (5%) Pb-Pb collisions

ITS Performance: Impact parameter resolution

The transverse impact parameter in the bending plane: $d_0(r\varphi)$ is the reference variable to look for secondary tracks from strange, charm and beauty decay vertices \triangleright good resolution needed to separate from primary

- o affected by material budget at low pt
- o below 75 μ m for $p_t > 1$ GeV/c
- good agreement data-MC (~10%)
- the point resolution of each layers drives the asymptotic performance

 ITS standalone enables the tracking for very low momentum particles (80-100 MeV/c pions)

ITS Performance: Particle Identification

The dE/dx measurement:

- Analogue read-out of four deposited charge measurements in SDD & SSD
- Charge samples corrected for the path length
- Truncated mean method applied to account for the long tails in the Landau distribution

The PID performance:

- PID combined with stand-alone tracking allows to identify charged particles below 100 MeV/c
- p-K separation up to I GeV/c
- K- π separation up to 450 MeV/c
- A resolution of about 10-15% is achieved

ITS Upgrade

Physics Motivations and Simulations Studies

The main physics goals for the ITS upgrade:

- improve the charmed baryonic sector studies
- access the exclusive measurement of beauty hadrons

They can be achieved by:

- improving the impact parameter resolution by factor 2-3 to identify short displaced secondary vertices
- implementing a topological trigger functionality
- exploiting PID in the trigger down to lower p_t

ITS Upgrade - Technical goals

- > Reduce **beam-pipe** radius from 30 mm to ~20 mm
- > Add a Layer 0 at ~20-22 mm radius (now SPDI at 39 mm)
- \triangleright Reduce **material budget** in the first layers from 1.1 to 0.5% X_0
 - Reducing mass of silicon, power and signals bus, cooling, mechanics
 - Using Monolithic Pixels
- > Increase the **radiation tolerance** of the first layers
 - Moving to smaller technology nodes $(0.18 0.13 \mu m)$
- > Reduce the **pixel size** to the order of $50 \times 50 \ \mu m^2$ and less $(425 \times 50 \ \mu m^2 \ at \ present)$
 - Main improvement in z
 - Main impact on medium / high p_t particles
- Increase the strip sensor granularity for smaller layer radii
 - Halving the strip length
- Reduce the number of detector technologies
 - 3 pixel layers followed by 3-4 pixel/strip layers
 - homogeneous output data format/read-out system
- > **Trigger capability** (L2 \sim 100 μ s): topological trigger, fast-OR/SUM

ITS Upgrade - Technology Implementation

Pixel detector technologies

Requirements:

- increased spatial resolution
- readout time < 50 μs
- radiation tolerant (2 Mrad, 2×10^{13} n_{eq})
- low power design (250 mW/cm²)
- minimized material budget

Hybrid pixels

- 100 μm sensor + 50 μm ASIC
- 30 µm x 100 µm pixels
- Flip-chip with $10 \mu m \times 10 \mu m$ bump bonds
- Smaller input pads and parasitic capacitance

Monolithic pixels

- 50 µm ASIC
- 20 μm x 20 μm pixels
- options for CMOS sensor:
 - rolling-shutter read-out
 - · sparsified read-out
 - drift-based in submicron

"ULTIMATE" prototype

ITS Upgrade - Technology Implementation

Strip detector technology

New design advantages:

- occupancy ~ 50% → lower radii
- better ambiguity resolution
- increased S/N ratio → better PID
- digital output and faster read-out

Silicon strip

- half-length strips (20 mm)
- small pitch interconnection (44 µm)
- ADC on-chip
- fast digitized data transmission
- larger input dynamic range

... to be implemented in view of the 2017-2018 LHC shutdown!

Conclusions

- The ALICE Inner Tracking System performance is well in agreement with the design requirements and the simulations
- The achieved impact parameter resolution allows to reconstruct the charmed decay secondary vertices
- Standalone capability allows to track and identify charged particles with momenta down to 100 MeV/c
- The possibility to improve the physics performance of an upgraded ITS has been studied
- Several options for the pixel and strip technology implementation are being investigated and developed

Thanks for your attention

BACKUP SLIDES

SDD calibration

SSD calibration

Calibration

The measured *intrinsic noise* of the 2.6 million SSD channels is used to:

- assess the detector efficiency
- guarantee the required signal-to-noise ratio
- monitor the SSD stability

Cluster charge distribution measured from collision data with all the SSD modules

• the gain can be calibrated at the module level

Gain map tuning: after the calibration, the MPVs are stable within a few %

Centrality

Impact parameter in p-p, global and ITS standalone

D0

