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Context: time of flight mass spectrometry
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Context: ion imaging

= Use a position sensitive detector to obtain x-y distributions
— |learn about reaction dynamics

= Need to tune the timing to select one ion

S atom ion images for OCS photodissociation at 248nm



Pixel Imaging Mass Spectrometry

= Combines time of
flight MS with 2D
lon imaging

= Takes advantage
of recent
advancesin
silicon to image
multiple ions in
one cycle




Initial proof of concept

= Proof of concept experiments with a fast framing camera
(Dalsa CCD) in 2007-8 for dimethyldisulfide
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= Required prior knowledge of timing of mass peaks
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Towards sensor requirements * 1register

B 2registers

= Want a fast sensor, flexible to 3 registers
analyse any mass spectrum X 4 registers
= Sparse events > consider ! o—
0.95
time-stamping approach 03
0.85
0.8

= To record both early and late 075

ions, need multiple memories. oes ‘\
0.6 T T T

HOW ma I']y’P SImUIate: 0 50000 100000 150000 2oolooo
n (ions flown)

p (ion detected)

all 40 ions simulated

1 PR L A R SRRSRS Rt ondanocc o
- e 1 RSB Rss
- e = RSN '\"‘\‘3«';'@:'}';.\ >
E 0.95 - g 0.95 WK
4 09 = 0.9
S S oss Yy
] 0.85 o 0.85
U o3 QU 08 -
S ° b 3
~ 0.75 o 0.75 ‘
Q 0.7 ° 0.7 ‘ v
® oy * —
S~ e S~ 065 <+
a o 2l % |
0 50000 100000 150000 200000 0 50000 100000 150000 200000

n (ions flown) n (ions flown)



PImMS1 sensor: specifications

= 72 by 72 pixel array

= 70 um by 70 um pixel

= 5mm x5 mm active area
= <50 ns timing resolution

= 12 bit time stamp storage

= 4 memories per pixel PImMS 1
= adjustable experimental period, up to ~1ms
= programmable threshold and trim — 4 bits per pixel

= one test pixel with access to intermediate analogue points



Overview of the sensor

Column bias and
timecode distribution

Pixel .
configuration Pixel
configuration
+ row
: read-back
addressing

72 'x 72 pixel array
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Digital Readout Path
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PImMS1 sensor: technology

NWELI SUB NMOS

= nght iS detECtEd in the DIODE  CONN TRANSISTOR

thin epitaxial layer,
<20um

= With only NMOS
transistors, obtain
limited functionality

= PMOS transistors
would compete for
charge
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= INMAPS process developed at RAL

= |solated N-well Monolithic Active
Pixel Sensors — p+ shield

= Gain full CMOS capabilities
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Sensor design:
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Pixel operation

diode

preamplifier

shaper
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memory 2
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Pixel layout
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Readout: camera

= USB control and
readout

= F-mount SLR lens

= Cooling system

= Option for
nitrogen/dry air
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Readout: software

= The camera is controlled and read out by bespoke
LabView software.

= Data can be saved to disk for offline analysis.

= A growing library of online and offline visualisation
tools is available.

Software design:
Jason Lee,
Oxford Chemistry

2 chn9E
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Analogue readout

= Corresponds to the

output of the pre-
amplifier

Represents the total
charge stored in each
pixel, cumulative for all
hits during a given
experiment

Mainly used for
focusing an optical lens
onto the phosphor
screen
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Digital readout — multiple hits

5 laser hits, 30us apart

()

eration Modes Setup | Advanced System Setup || Process Images

A = analogue image,
integrated over all
hits

1=1%memory
2 = 2" memory
3 = 3"9 memory

4 = 4" memory
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Digital readout — 3D visualisation

1st four pulses:

= 5 laser pulses, 25ns long, at 405nm

7,
-
o . = =
= 40ps apart = 800 timecodes (50ns/timecode) “ l
=
2 -1
7] -
- (@)
= = iz J x
o -
O Wi
€ i
= . 2
— N -
o~ S
4 o .
1 B |
-
i 2
e > -E : :
—— + - —Y qa v .
. R — R S“.\o | |
Pixel Position - pixel PO = v

Timecode
19



Threshold

= The threshold for experiments is set by two adjustable
analogue voltages (generated on the camera)

= This shows the spot produced by a defocused class 1 laser
at increasing threshold levels.
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Sensor calibration

Pixel response to trim
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= Dispersion (sigma) before s i e e
and after calibration:
12.5->4.5 mV (this plot).

1000—: - - —Un;alibrated

= With subsequent .
improvements to the . ™
software, the current
dispersion is 2.3 mV. e
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Optical testing

Quantum
efficiency 8-9%
for visible light

Max @ 470 nm

Fill factor 20% for
front illuminated

Full well capacity
24,000 e-

Variance - Dark Variance (log(DN))
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Mass spectrometry rig (Oxford Chemistry)
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Comparison of PImMS and PMT

PMT signal PImMS signal
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= Same mass peaks seen with PImMS as with a
photomultiplier tube (PMT)
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Velocity map imaging
= N,N-dimethylformamide (DMF) is a prototype

molecule for studying peptide bond cleavage.

= Early PImMS data on the 193 nm fragmentation
of DMF is shown below.
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First PImMS spatial imaging results

= Comparison:
conventional

camera
to PImMS
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PImMS2

Larger array: 324 by 324 pixels
23 mm by 23 mm active area
380 experiments/sec

Potential 400,000
measurements per
experimental cycle

Designed to also work directly
after MCP — reduced pin count
for vacuum applications

Improved power supply,
routing and trim

Submission this autumn, ready
by early 2012
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Future work and directions

Sensor characterisation:

= Currently working on: noise, time resolution

= Next: spatial resolution, time walk versus light power

In Chemistry, further spatial and velocity map imaging

Possible new applications:
= Atomic probe tomography (alloy analysis)

= Fluorescence imaging

Larger, improved sensor PImMS2

= Submission this autumn; testing in early 2012

28



Summary

PImMS is both a new technique in mass spectrometry
and a specialised sensor for MS

The first sensor has been proven for mass spectrometry

Adding 2D sensing to a time-of-flight mass spectrum
adds structural information and can increase throughput

Multiple memories capture different mass peaks within
one experimental cycle

The second generation sensor will be ready in early 2012
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Sensor calibration
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Number of hits
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Number of hits :

Pixels are
characterised by
plotting threshold
voltage versus
number of noise hits.

Limited floor space
and manufacturing
tolerances mean that
pixel responses vary.
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Sensor calibration
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