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Outline 

 PImMS: Pixel Imaging Mass Spectrometry 

 PImMS1 sensor 

 Context  / requirements 

 Design 

 Initial results 

 Future directions 

PImMS 1 
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Context: time of flight mass spectrometry 

 

 

Mass spectrum for  
human plasma 

~ 100 µs duration 
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Context: ion imaging 

 Use a position sensitive detector to obtain x-y distributions 
– learn about reaction dynamics  

 Need to tune the timing to select one ion 

S atom ion images for OCS photodissociation at 248nm 
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Pixel Imaging Mass Spectrometry 

 Combines time of 
flight MS with 2D 
ion imaging 

 Takes advantage 
of recent 
advances in 
silicon to image 
multiple ions in 
one cycle 
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Initial proof of concept 

 Proof of concept experiments with a fast framing camera 
(Dalsa CCD) in 2007-8 for dimethyldisulfide 

 

 

 

 

 

 
 Required prior knowledge of timing of mass peaks 

M. Brouard, E.K. Campbell, A.J. Johnsen, C. Vallance, W.H. Yuen, and A. Nomerotski, Rev. Sci. Instrum. 79, 123115, (2008) 

CH3S2CH3 
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Towards sensor requirements 

 Want a fast sensor, flexible to 
analyse any mass spectrum 

 Sparse events  consider 
time-stamping approach 

 To record both early and late 
ions, need multiple memories. 
How many?  Simulate: 
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PImMS1 sensor: specifications 

 72 by 72 pixel array 

 70 µm by 70 µm pixel 

 5 mm x 5 mm active area 

 < 50 ns timing resolution 

 12 bit time stamp storage 

 4 memories per pixel 

 adjustable experimental period, up to ~1ms 

 programmable threshold and trim – 4 bits per pixel 

 one test pixel with access to intermediate analogue points 

PImMS 1 
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Overview of the sensor 

Column bias and  
timecode distribution 

Digital Sense Amplifiers 

Pixel 
configuration 
read-back 

Pixel 
configuration 

+ row 
addressing 

Analogue Readout Path 

Digital Readout Path 
12 

72 x 72 pixel array 
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PImMS1 sensor: technology 

 Light is detected in the 
thin epitaxial layer,  
< 20µm 

 With only NMOS 
transistors, obtain 
limited functionality 

 PMOS transistors 
would compete for 
charge 

 INMAPS process developed at RAL 

 Isolated N-well Monolithic Active 
Pixel Sensors – p+ shield 

 Gain full CMOS capabilities 
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PImMS1 sensor: technology 

 0.18µm CMOS 
fabrication 

 INMAPS process 

   

 615 transistors per pixel 

 over 3 million transistors 
in all 

7.2 mm 

Sensor design:  
     Andy Clark and Jamie Crooks, 
     STFC Rutherford Appleton Laboratory 
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PImMS pixel 

Charge 
Collection 
Diodes 

Preamplifier Shaper 

Comparator  

hit  

12-bit timecodes 
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Pixel operation 

1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 

0  0  0  0  0  6  6  6  6   6    6   6   6    6   6   6   6    6 

0  0  0  0  0  0  0  0  0   0    0   0   0   14 14 14 14 14 

 

diode 

crossing => hit 

preamplifier 

shaper 

comparator inputs 

hit indicator 

timecode 

memory 1 

memory 2 

crossing => hit 

13 
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Pixel layout 
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Readout: camera 

 USB control and 
readout 

 F-mount SLR lens 

 Cooling system 

 Option for 
nitrogen/dry air 
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Readout: software 

 The camera is controlled and read out by bespoke 
LabView software. 

 Data can be saved to disk for offline analysis. 

 A growing library of online and offline visualisation 
tools is available. 

Software design:  
     Jason Lee,  
     Oxford Chemistry 
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Analogue readout 

 Corresponds to the 
output of the pre-
amplifier 

 Represents the total 
charge stored in each 
pixel, cumulative for all 
hits during a given 
experiment 

 Mainly used for 
focusing an optical lens 
onto the phosphor 
screen 
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Digital readout – multiple hits 

5 laser hits, 30µs apart 

A           1            2            3            4   

A = analogue image, 
integrated over all 
hits 

1 = 1st memory 

2 = 2nd memory 

3 = 3rd memory 

4 = 4th memory 
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Digital readout – 3D visualisation 
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 5 laser pulses, 25ns long, at 405nm 

 40µs apart = 800 timecodes (50ns/timecode) 
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1st four pulses: 
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Threshold 

0.1 mV 

55 mV 

100 mV 

200 mV 

400 mV 

 The threshold for experiments is set by two adjustable 
analogue voltages (generated on the camera) 

 This shows the spot produced by a defocused class 1 laser 
at increasing threshold levels. 
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 Each pixel has 4 bits of 
trim and can be masked 

 Maximum trim ~50mV 

 Dispersion (sigma) before 
and after calibration: 
12.5 -> 4.5 mV (this plot). 
 

 With subsequent 
improvements to the 
software, the current 
dispersion is 2.3 mV.  

Sensor calibration 
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Optical testing 

 Quantum 
efficiency 8-9% 
for visible light 

 Max @ 470 nm 

 Fill factor 20% for 
front illuminated 

 Full well capacity 
24,000 e- 
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Signal  - Dark Signal (log(DN)) 

Photon Transfer Curve (on Log - Log scale) 
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Mass spectrometry rig (Oxford Chemistry) 
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Comparison of PImMS and PMT 

 Same mass peaks seen with PImMS as with a 
photomultiplier tube (PMT) 

 2 fragments of CHCA 
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Velocity map imaging 

 N,N-dimethylformamide (DMF) is a prototype 
molecule for studying peptide bond cleavage. 

 Early PImMS data on the 193 nm fragmentation 
of DMF is shown below. 
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First PImMS spatial imaging results 
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3 4 
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 Comparison: 
conventional 
camera 
to PImMS 
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PImMS2 

 Larger array: 324 by 324 pixels 

 23 mm by 23 mm active area 

 380 experiments/sec 

 Potential 400,000 
measurements per 
experimental cycle 

 Designed to also work directly 
after MCP – reduced pin count 
for vacuum applications 

 Improved power supply, 
routing and trim 

 Submission this autumn, ready 
by early 2012 
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Future work and directions 

 Sensor characterisation: 

 Currently working on: noise, time resolution 

 Next: spatial resolution, time walk versus light power 

 In Chemistry, further spatial and velocity map imaging 

 Possible new applications: 

 Atomic probe tomography (alloy analysis) 

 Fluorescence imaging 

 Larger, improved sensor PImMS2  

 Submission this autumn; testing in early 2012 
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Summary 

 PImMS is both a new technique in mass spectrometry 
and a specialised sensor for MS 

 The first sensor has been proven for mass spectrometry 

 Adding 2D sensing to a time-of-flight mass spectrum 
adds structural information and can increase throughput 

 Multiple memories capture different mass peaks within 
one experimental cycle 

 The second generation sensor will be ready in early 2012 
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Back-up material 
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Sensor calibration 
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Pixels are 
characterised by 
plotting threshold 
voltage versus 
number of noise hits. 
 
Limited floor space 
and manufacturing 
tolerances mean that 
pixel responses vary. 

 Masking assists 
calibration by handling 
subsets of pixels. 

 1 configuration bit per 
pixel disables the 
comparator. 

 Arbitrary masks are 
possible. Three laser 
pulses have been 
recorded here. 
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After 
trimming of 
pixels 

Sensor calibration 
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