

The development of x-ray imaging for airport security, defence and medical markets

John McGrath

9th International Conference on
POSITION SENSITIVE DETECTORS
Aberystwyth
12th September 2011

To be the leading provider of digital colour x-ray imaging enabling direct materials identification in the security, medical, industrial inspection and defence markets

Profile

- Founded in 2003 as spin out from Durham University
- Based in North East England, UK and California, USA
- More than 140 families of patents over entire value stream
- Acquired Nova R&D Inc, a Californian corporation in June 2010
- Employ over 60 people in US and UK including 19 PhD's
- ISO 9001 accreditation for all internal design and manufacturing processes
- Business Model : End user products for niche applications and technology solution provider to OEM's in conventional markets

End user products for niche applications and technology solution provider to OEM's in conventional markets

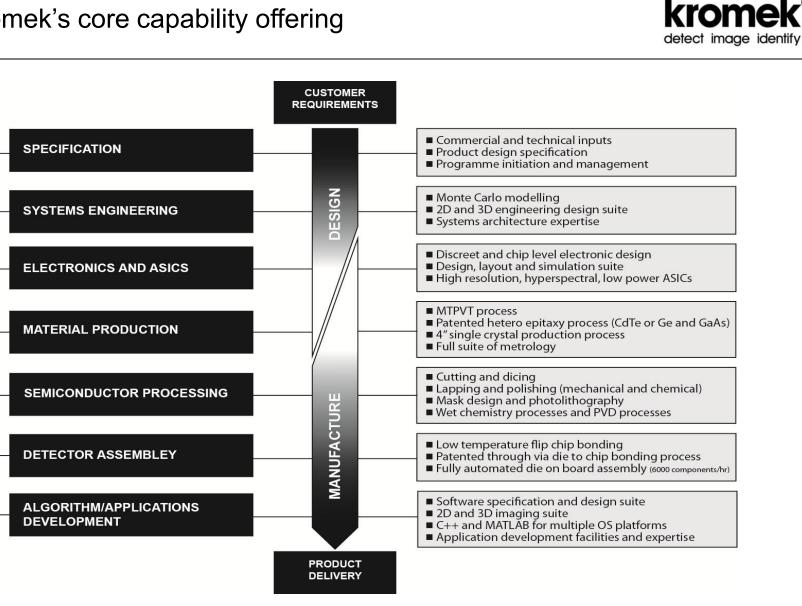
Materials

Substrates and detector grade material

Detectors

Pixellated and planar detectors with electronics

Sub-systems


Application specific sub-system assemblies with Kromek detectors

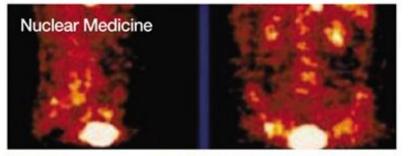
Platform Integration + Products

Selective high value-added system prototypes exploiting advantages of Kromek detectors

SO 9001 : 2008

Medical \$8.1bn CAGR of 7%	70% of all diagnostic imaging procedures are x-ray	X-RAYS GOING	Cadmium Telluride
Security \$30bn CAGR of 11%	Increasing emphasis on x-ray security post 9/11	DIGITAL	is the premier choice

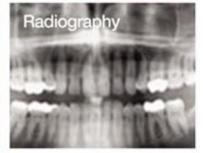
Large markets



Medical Imaging \$8.1bn

Security \$1bn

Security Screening



Inspection \$1.5bn+ Industrial Inspection

Defence \$750m

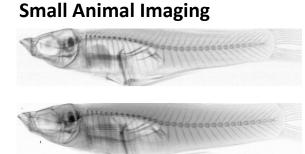
Night Vision IR Substrate

Medical

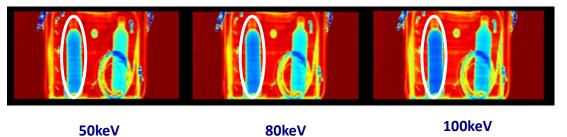
- Multispectral CT detector subassembly development (OEM)
- Detection module for non-invasive colorectal scanning capsule (OEM)
- Multimodal x-ray imaging and breast CT (UMASS NIH, USA)

Security

- Liquid explosive detection system (ECAC Type B)
- Spectral imaging system for baggage screening (Type C&D)
- Sheet explosive and powder detection system


Industrial

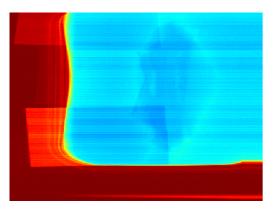
- 3D imaging for large object scanning (OEM)
- High resolution x-ray imaging camera for semiconductor inspection (OEM)


Defense

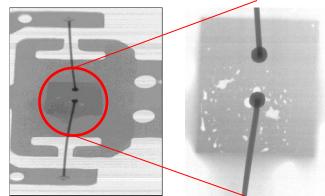
- Large volume CZT detector development for gamma ray detection
- Low power high resolution spectroscopic ASIC for gamma ray detection (OEM)
- 2 Phase II SBIR programmes



Multispectral x-ray images for explosive detection



Cancer Detection



Contrast Enhanced Breast Imaging

Hyper-spectral Imaging for defect and anomaly detection

Plastic strips in butter tub

Electronic connection showing solder voids visible through connectors

Examples of Kromek OEM products

High Resolution

output at low radiation doses

High Speed

real-time imaging Colour x-ray

energy discrimination

Portable & Simple

no cooling

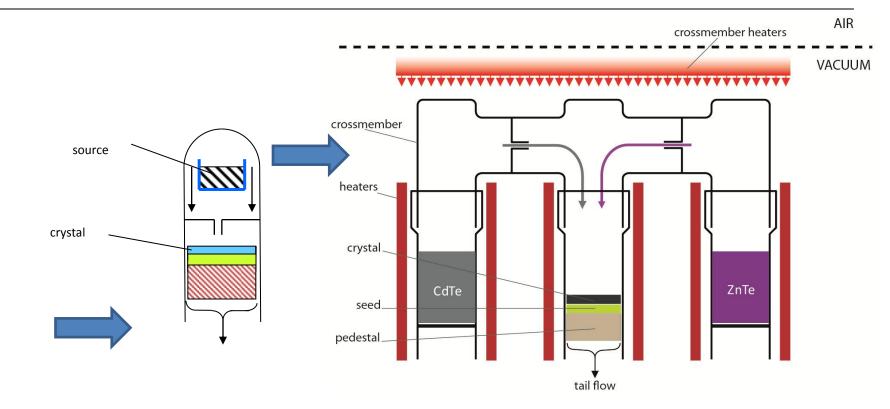
more sensitive than silicon

- Better
- Cheaper
- Larger

Current Materials Variable quality

Kromek's Process

High quality + optimised by application

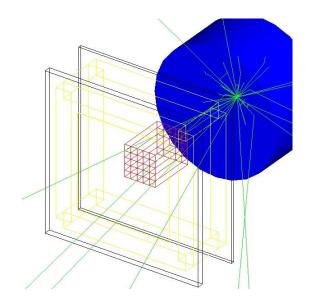

Lower cost

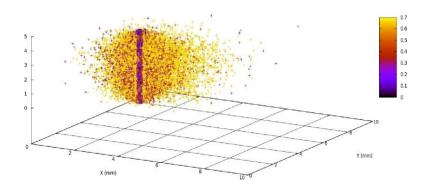
- Larger wafers
- Better quality
- Reliable supply chain

source

crystal

A comprehensive modelling tool that can be used for detector design and analysis.

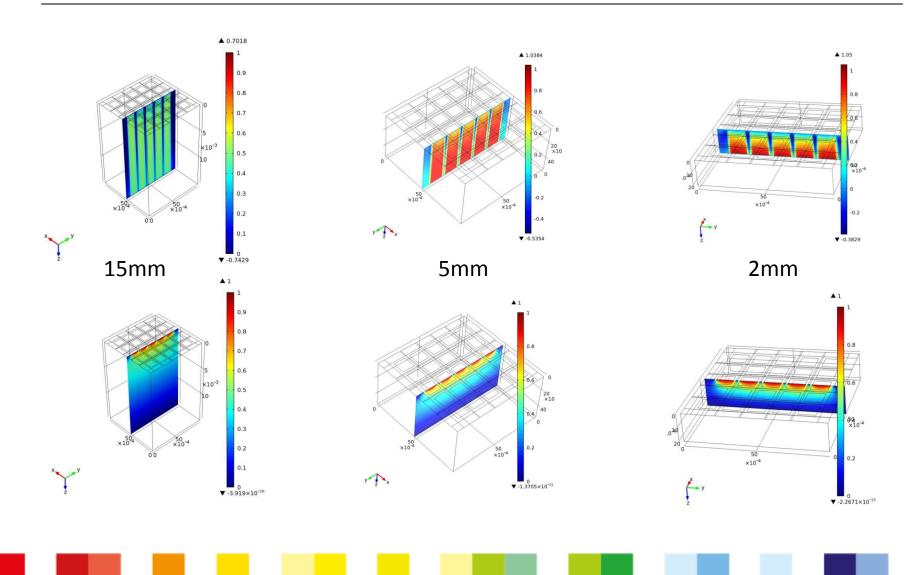

- 1. Production and Transport of Radiation
- 2. Ionisation of the Semiconductor
- 3. Separation and Acceleration of Electrons and Holes by the Electric Field
- 4. Transport of Charge Carriers within the semiconductor and induction of charge on the electrodes (formation of charge pulse)
- 5. Amplification and Processing of the Charge Pulse


This can be achieved in 3 steps;

- 1. Geant4
- 2. COMSOL (Finite Element Method for Device Modelling)
- 3. LABVIEW (Post Signal Processing)

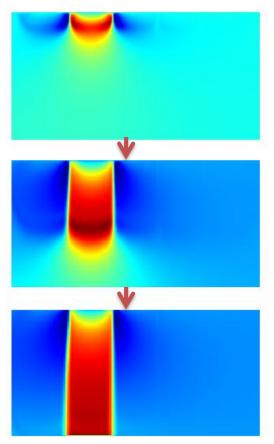
- Monte Carlo Modelling for Detector modules
- For full dectector designsindustrial, medical and security.
- Energy Deposition
- Interaction positions

Because of the complexity of these devices direct mapping of pulse shapes is impractical. The charge-carrier continuity equation must be solved for each point, this becomes prohibitive for complex electrode structures.

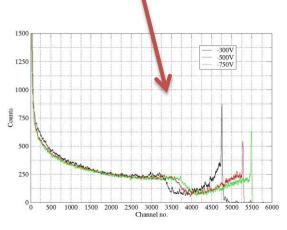

$$\frac{\partial n^+}{dt} = \mu_n \nabla \varphi \cdot \nabla n^+ + \nabla \cdot (D_n \nabla n^+) - n^+ / \tau_n + G_n^+$$

Prettyman introduced a new method for mapping charge pulses by solving the adjoint carrier equation which yields a time and position dependent map that contains all possible charge pulses that can be produced by the detector for charge generated at discrete locations.

Charge Induction Efficiency Maps



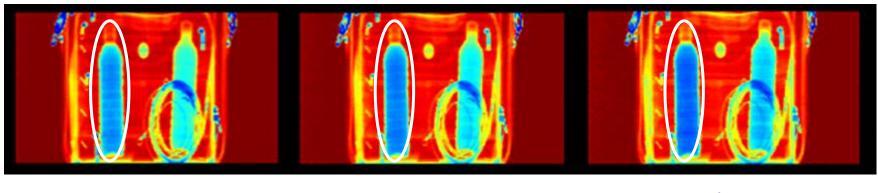
Experiment vs Simulation


- 2mm, 5mm and 15mm thick detectors
- Largest at present 20x20x15mm
- 15mm needs DOI correction because of limited electron lifetime and diffusion
- 5mm needs DOI because of Weighting Potential effects
- Using RENA ASICs from Nova – good for spectroscopy

CIE at -300V, 0.1, 0.5, $1\mu s$

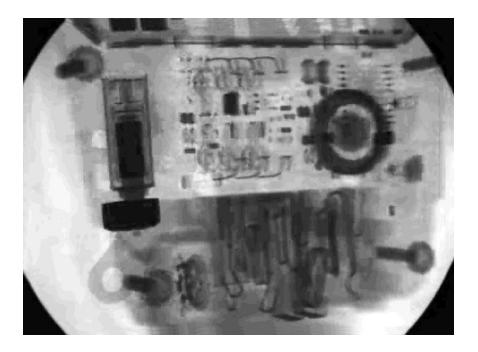
As reverse bias is increased, the CIE gets closer to 1 hence the photopeak moves right.

Large depth dependency in the CIE remains, hence there is a long tail on the photopeak.



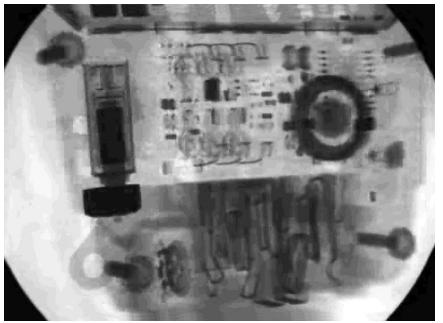
- Identifies the presence of hazardous liquids in containers (liquids, aerosols and gels)
- Industry's lowest false alarm rate
- Scans all type/shapes container (coloured, clear and opaque glass, plastic, metal and cardboard)
- Scans in less than 20 secs
- Easy to use one-touch operation
- Simple PASS/FAIL display
- Threat database easily upgraded

50keV


80keV

100keV

- Multispectral x-ray image of 2 bottles inside a bag at three different energy levels
- One bottle contains hydrogen peroxide (white circled) and other alcohol
- ADMiTTM algorithm can accurately identify material independent of the volume or thickness in convoluted and multilayered environments



X-Ray Animation (XRA) new imaging IP will radically improve threat detection

- 3D Imaging with materials recognition
- Multiple fan beams from a single source
- Exploits the physiological phenomenon of monocular movement parallax to create three dimensional view of object.
- Allows separation of layered or hidden parts
- Images combined to produce an animated 3D view of the object
- Gathers spectral x-ray information, uses Kromek proprietary algorithms to determine material constituents of the object & correlates material assignments via voxel analysis

Kromek Ltd NETPark Thomas Wright Way Sedgefield County Durham TS21 3FD

T: +44 (0) 1740 626060 F: +44 (0) 1740 626061 E: sales@kromek.com W: www.kromek.com