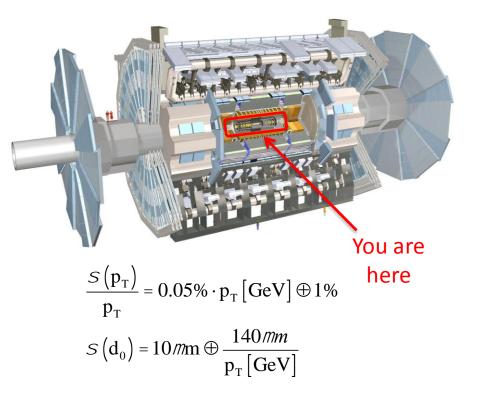
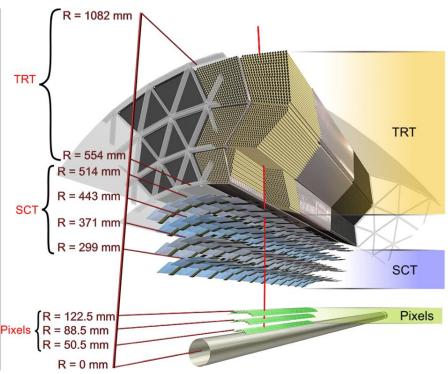
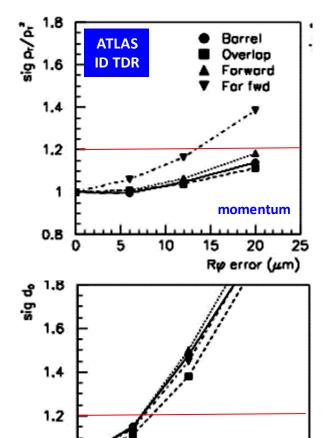
Track based Alignment of the ATLAS Inner Detector Tracking System

Jochen Schieck
Ludwig-Maximilians-Universität München
und
Excellence Cluster Universe
for the ATLAS Collaboration


9th International Conference on Position Sensitive Detectors Aberystwyth 12th - 16th, September 2011



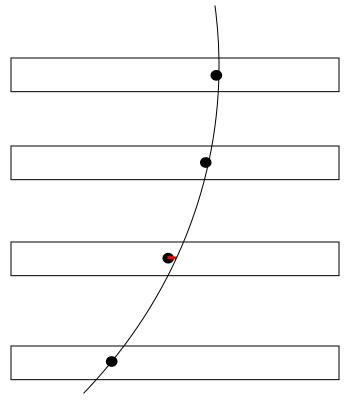
The ATLAS Detector

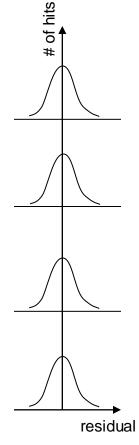

- ATLAS Inner Detector (ID) main tracking device of ATLAS
 - consists of Pixel, Silicon strip (SCT) and drift tube (TRT) detectors
 - single hit resolution between 10 μm (Pixel) and 130 μm (TRT)

Requirements from Tracking

- construction and installation precision $^{\sim}100~\mu m$
- track parameter resolution should not be degraded by more than 20%
 - 7 μm precision in RΦ for Pixel
 - 12 μm precision in RΦ for SCT
- ultimate precision can be achieved with track based alignment procedure only
- hardware based system (FSI) available in the SCT to monitor fast movements of support structures

10

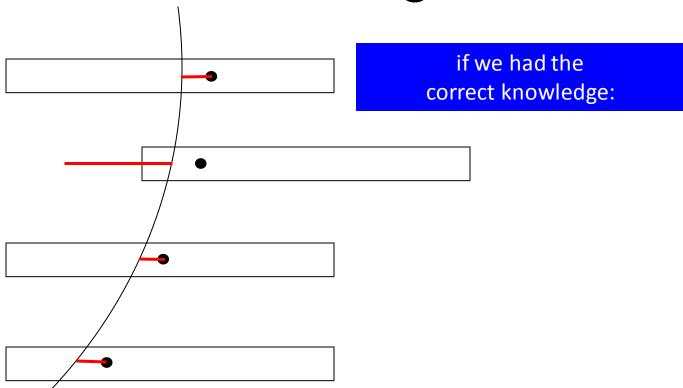


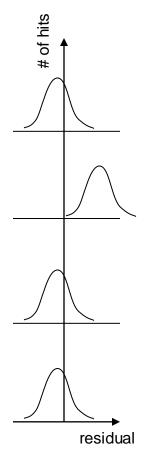


Re error (um)

impact parameter

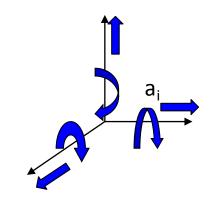
How to align a Detector


residual = distance between hit and the fitted track



How to align Detector

implication minimize residuals with respect to the module's positions

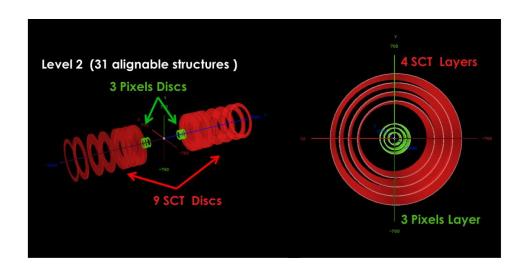


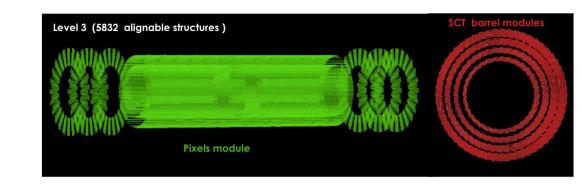
Track based alignment procedure

$$C_0^2 = \mathop{\mathrm{a}}_{tracks} \oint r(a, \rho) \dot{\theta}^T V^{-1} \oint r(a, \rho) \dot{\theta}$$

$$\triangleright d\mathbf{a} = -\hat{\mathbf{e}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{tracks}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{da}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{da}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{da}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{da}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{da}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{da}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\underset{\hat{\mathbf{e}}_{da}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{da}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}}{\overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}{\overset{\text{\'e}}}}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}{\overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\re}}} \overset{\text{\'e}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}}} \overset{\text{\'e}} \overset{\text{\'e}} \overset{\text{\'e}}} \overset{$$

- collect residual distributions for each module and minimize with respect to the alignment parameters
- module-to-module correlations are taken into account by nested dependence on track parameters:
- increased convergence speed $\frac{dr}{da} = \frac{\P r}{\P a} + \frac{\P r}{\P D} \frac{d\rho}{da}$ derivative of the residual w.r.t. track derivative of the track parameters w.r.t. alignment parameters
 - derivative of the residual w.r.t. the alignment parameters



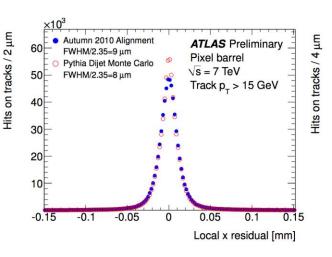


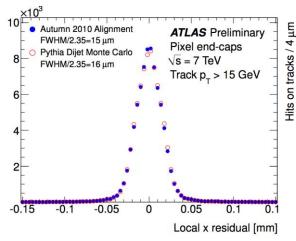
Track based alignment procedure

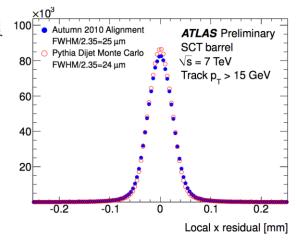
- start from survey information (Pixel)
- perform hierarchically alignment following detector structure
- align up to 6 degrees of freedom (d.o.f.) per structure
 - 35k d.o.f for Pixel and SCT (6 d.o.f. per module)
 - 700k d.o.f for TRT (2 d.o.f. per straw)
- iterative procedure
 - 10-20 steps for production of complete alignment set

Input to the Alignment Algorithm

- high p_T—tracks to minimize multiple scattering effects
 - 1. tracks from collision events
 - enough tracks during collisions produced –statistics no problem
 - large time consumption due to repeating reconstruction of tracks in iterative alignment
 - production of reduced data stream with selected high p_T-tracks containing ID and track related information only
 - 2. tracks from cosmic ray events
 - different track topology
 - tracks connect top and bottom of ID
 - hardly any illumination of endcap

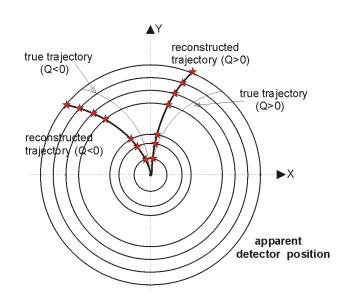


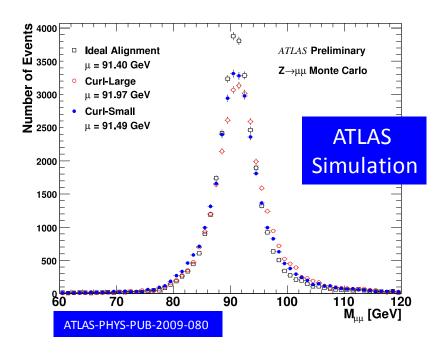



11

Residual Distribution

- alignment minimizes the X² all measurement residuals
 - alignment returns residual distribution which is almost consistent with MC residual distribution with perfect geometry
 - this is a necessary but not sufficient condition
 - resulting X²-value may end up at a local X²-minimum (or valley weak modes of the solution)



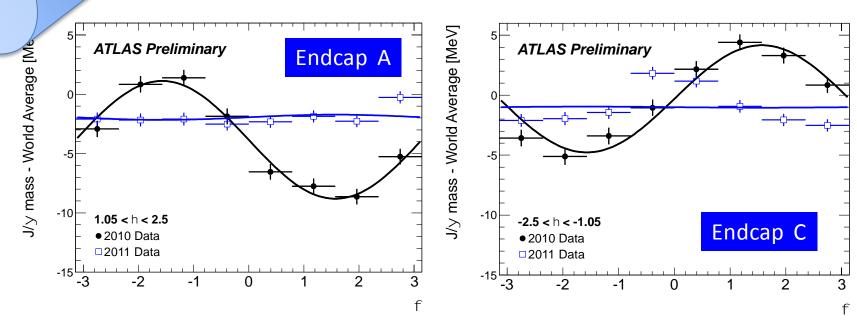


ID Alignment – Quality Assurance

- estimate alignment performance using control plots not based on residual distributions
 - main focus on the improvement of the momentum scale

Overall Position of Detector

- alignment procedure returns internally consistent set of alignment constants
 - 6 d.o.f. (= overall position of detector) cannot be determined from alignment procedure
 - initial position determined by requiring minimal moduleby-module deviation from the perfect geometry
- keep average position consistent for alignment updates (keep beam spot position constant)
 - ID may be misaligned with respect to the solenoidal magnetic field (relative tilt)

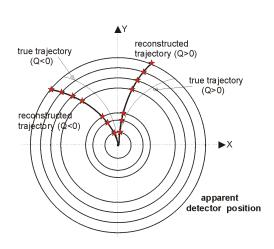


14

Sole

Solenoid Field Tilt

- measure the invariant mass variation with respect to PDG-value (ΔM) as function of Φ
 - tilt of the magnetic field is reflected in Φ-dependent J/ψ -mass
 - rotation around the x-axis by 0.55 mrad reduces Φ-dependence significantly

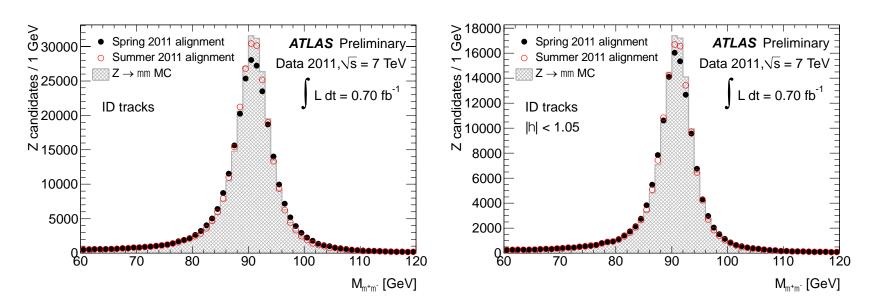

E/p Momentum Constraint

- identical calorimeter response for e⁺ and e⁻
- E/p measurement sensitive to charge asymmetric bias on p-measurement (like curl or sagitta distortions)
- measure E/p (η, Φ) and use offset between e⁺ and e⁻ to constrain track momentum in alignment

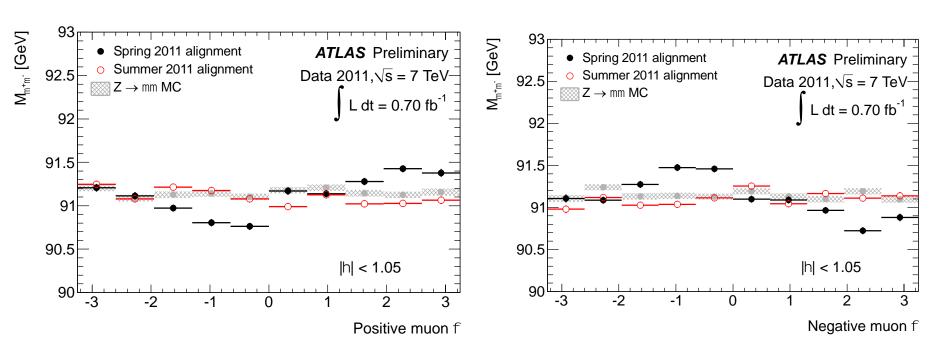
$$\frac{Q}{p^{correct}} = \frac{Q}{p^{reconst.}} (1 \pm p_T^{reconst.} Q)$$

$$\left\langle \frac{E}{p^{correct}} \right\rangle^{+} = \left\langle \frac{E}{p^{reconst.}} \right\rangle^{+} \left(1 + \left\langle p_T^{reconst.} \right\rangle^{+} \times Q \right)$$

$$\left\langle \frac{E}{p^{correct}} \right\rangle^{-} = \left\langle \frac{E}{p^{reconst.}} \right\rangle^{-} \left(1 - \left\langle p_T^{reconst.} \right\rangle^{-} \times Q \right)$$

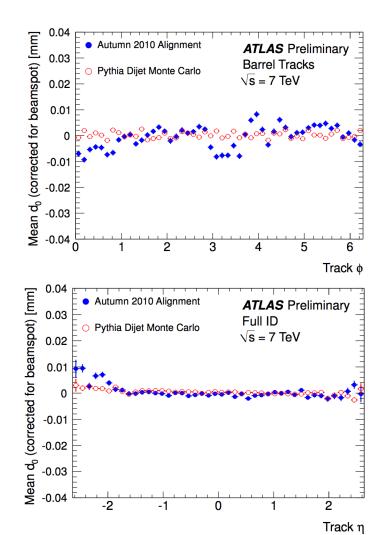


Improved Mass resolution using E/p constraint

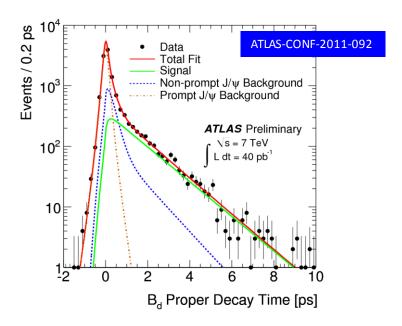

- mass resolution of Z significantly reduced with E/p constraint tracks used in the alignment procedure
- data performance nearly reproduces MC predictions

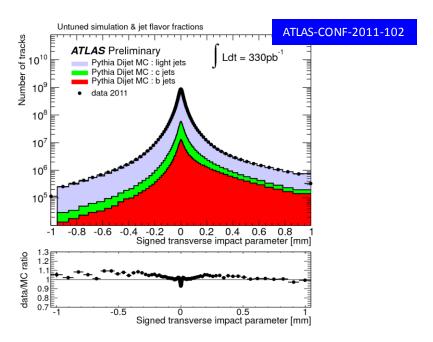
Improved Mass resolution using E/p constraint

• E/p constraint removed Φ-dependence of Z-mass



Effect on Impact Parameter Measurement


- input tracks for alignment constraint to originate from primary vertex (d₀= 0)
- impact parameter
 measurements as a function of
 η and Φ indicate residual
 misalignments
 - $-\Delta d_0$ up to 10 μ m
- impact on impact parameter based measurements expected



Impact Parameter based Measurements

- exclusive B_d lifetime measurement
- τ_{Bd}=1.51±0.04+0.04 ps (PDG: 1.519±0.007 ps)
- (0.04 ps ~ 20 um for 10 GeV B-Meson)

- impact parameter based b-flavour tagging
- negative part of signed impact parameter (=resolution) returns up to 10% difference to Monte Carlo

Some Final Remarks

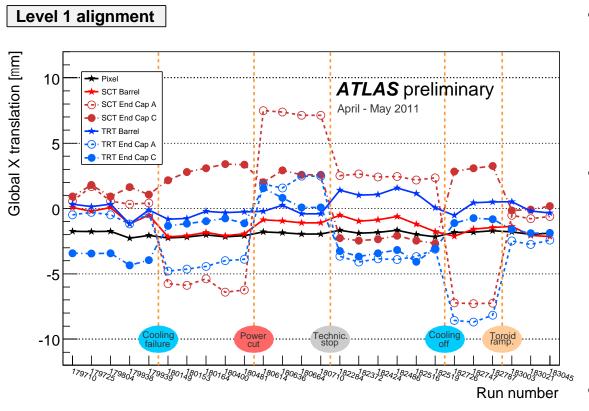
- production of alignment constants is time and computing intense
 - several iterations with track (finding and) reconstruction required
 - reduced data format (e.g. data stream with hits of high p_T -tracks only) improves turnaround and speeds up validation
- cosmic tracks are highly valuable for alignment performance
 - consider trigger of cosmic tracks during data taking
- minimizing residuals is the easy part
 - focus early on measurements sensitive to global distortions

Summary

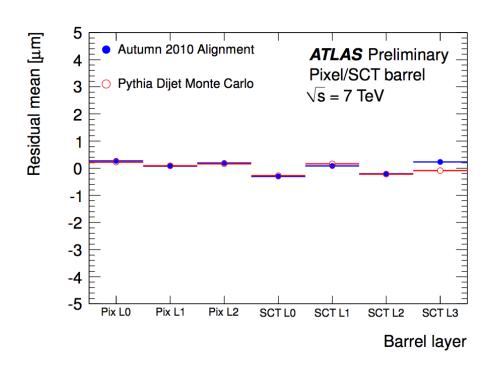
- alignment of ATLAS ID uses track based alignment
 - minimization of residuals with respect to alignment parameters
- residual distribution almost identical to MC with perfect geometry
 - residual minimization necessary but not sufficient
- momentum measurement considerably improved by
 - realignment of B-field with respect to the ID
 - require identical E/p measurement for e⁺ and e⁻
- measurement of average offset of impact parameter d_0 better than 10 μm

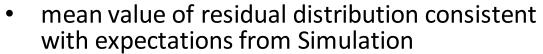
BONUS MATERIAL

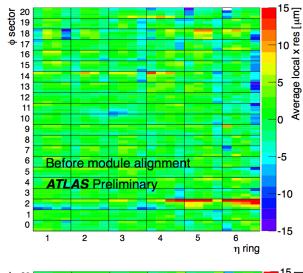
The ATLAS Inner Detector

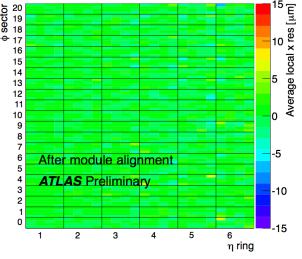

subdetector	r (cm)	element size	resolution (X * Y)	hits/ track (Barrel)	channels
Pixel (Silicon)	5-12.5	50μm * 400μm	10μm * 115μm	3	80x10 ⁶
SCT (Silicon Strip)	30-52	80µm * 12cm (stereo)	17µm * 580µm	4	6x10 ⁶
TRT (straw tubes)	56-107	4mm * 74cm	130μm	30	0.4x10 ⁶

Time Dependence of Alignment


- single set of alignment constants used for 2011 data
- small (<10 μm) changes visible
 - changes related to mechanical interventions (ie. power cut)
- pixel stable during data taking period






Residual Distribution

significant improvement achieved by alignment using individual module DoFs

