

Active Pixel Sensors for Direct Detection of Soft X-rays

Andrew Blue*a, R. Batesa, A. Clarkc, S. Dhesib, D. Maneuskia, J. Marchalb, P. Steadmanb, G. Stewarta N. Tartonib, R. Turchettac

- a: University of Glasgow, School of Physics and Astronomy, Kelvin Building, University Avenue, Glasgow, G12 8QQ
- b: Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE
- c: STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX

Introduction

- Motivation for CMOS APS
- Lab Tests
 - Photon Transfer Curve
 - QE
- Diffraction Experiment At Diamond Light Source
 - Noise Sources
 - Signal-to-Noise Profiles
- Conclusions

Charge Coupled Devices

- CCDs collect charge within their pixel architecture, each pixel acting as a capacitor.
- Once the integration time is complete, each capacitor passes charge sequentially down a column.
- If a pixel saturates, charge can spread to neighbouring pixels (an effect known as blooming).
- Most popular imaging device, due to their low noise and high sensitivity.
- CCDs often have thick, fully depleted substrates and epi-layers.

University of Glasgow Active Pixel Sensors

- Photon to Voltage conversion done within pixel
- Integrated electronics in circuit to suit applications discriminator, flags)
- Low mass, low power cameras.
- Faster frame rates achievable.
- Charge sensed inside pixel . . .

No charge transfer.

Greater radiation tolerance.

Design reduces streaking that can be prevalent in CCDs

Motivation for CMOS APS

- The CMOS APS have fast frame rates.
 - Fastest CCD operation 0.1Hz
 - Fastest full frame CMOS APS operation 20Hz

- On-chip processing can combine the image sensor and image processing functions, increasing speed and reducing physical size.
- CMOS APS can read out a Region of Interest (RoI) for even faster frame rates
- CMOS APS are cheaper to fabricate
- CMOS APS do not have to be operated at low temperatures for reasonable signal to noise performance.
- They can be backthinned for improved detection of UV photons

How does APS compare to CCD's for direct detection of soft X-rays?

Vanilla APS

- Made as part of the M-I³ RC-UK Basic Technology grant
- 520x52025μm pixels (1.3cm x 1.3cm)
- A readout rate of 20Hz 0.1 Hz (full frame mode)
- Region of Interest (ROI) readout
 - Readout rate of 24kHz for 6x6 region
- The sensor designed to allow back thinning
- Designed full well capacity of ~100k e⁻¹
- The pad layout allows for the butting of sensors on two sides.
- NOT designed specifically for synchrotron applications

Characterisation

- Before any demonstrator use, sensors must be fully characterised for
 - Noise
 - Shot Noise
 - FPN
 - Read Noise
 - Dark Current
 - Gain
 - Full Well Capacity
 - Linearity
 - Quantum Efficiency
 - Stability
- Similar for both CCD and CMOS devices (mostly)
- Imaging devices => tested with photons (not conventional "particle physics" approach)

Noise

Shot Noise

- » The standard deviation for the number of interactions per pixel
- » Fundamentally related to the charge generated by a photon's interaction with a semiconductor

$$\sigma_{\rm SHOT}(P_I) = P_I^{1/2}$$

Fixed Pattern Noise

- » In sensors, some pixels collect charge more efficiently than others
- » This results in pixel-to-pixel sensitivity differences
- » This noise is "Fixed" as it is not random, but is spatially the same pattern from image to image

$$\sigma_{\text{FPN}} = P_N S$$

Read Noise

» Defined as any noise source encountered in imagers which is not a function of signal

$$\sigma_{\text{READ}}(P_I) = A$$

University Of Glasgow Photon Transfer Curve

- The PTC (or Photon Transfer curve) is the most curial and important analytical technique for imaging sensors
- The rms noise is plotted as a function of average signal at different light levels (or exposure times)
- The plot is made in log-log scale

Iniversity PTC Measurements

- Illuminations achieved using super-bright, narrow bandwidth LED (520nm) Coupled with diffuser produced uniform illumination (<1% dev.)
- The light intensity was varied by changing the voltage applied to the LFD until saturation
- 100 Frames at each illumination stage

Shot Noise area extrapolated from fit to calculate the Camera Gain Constant

K (e⁻/DN)

'Comparison of Methods for Estimating the Conversion Gain of CMOS Active Pixel Sensors'

'SE Bohndiek, A Blue, A Clark et al IEEE SENS J 8 (2008) pg 1733

Lab Measurements

Backthinned – QE

- Sensor used was backthinned using a mixed process of polishing, wet etch, and plasma etch
- Sensor was then flipped to allow detection from back side

- QE Improved in the low visible and UV
- "bump" at 230nm is actually beginning of absorption of UV in air

Sensors Under Test

	Princeton PIXIS CCD	Vanilla CMOS
Pixel Size	13.5 μm	25 μm
Number of Pixels	2048 x 2048	520 x 520
Total Dimensions	2.8 x 2.8 cm	1.3 x 1.3 cm
Frame Rate	0.1 – 0.003 Hz	20Hz – 0.1 Hz
Full Well Capacity	100 000 e ⁻	100 000 e ⁻
Operating Modes	Low Noise Input	Analogue Readout
	High Capacity Output	Digital Readout

- CCD used: Princeton PIXIS-XO: 2048B
 - High Capacity and Low Noise modes for high or low flux applications.
 - Each mode has 3 different gain modes.
- APS used: Vanilla, developed by a UK funded collaboration (MI³)
 - Backthinned for enhanced UV detection.
 - Faster frame rates

Diffraction Experiment

- Experiment performed at Diamond Light Source, Beamline 106.
- A permalloy sample was used to create a diffraction pattern.
 - Permalloy is a Nickel-Iron alloy, used here as a representative test sample.
- Soft X-rays (700 eV) diffracted.
- Sensor was back-illuminated and kept in a vacuum.
- CCD kept at -55°C, Vanilla cooled from 20°C to -20°C.
- Noise, Signal to Noise, Peak to Trough, Dark Current and charge collect were all measured with both sensors.

CCD Diffraction Pattern

Low Noise Mode, -55°C

10s Integration Time

- Dashed line is where the line profile is taken from.
- Solid square indicates the area the vanilla sensor covered.
- 300s integration time shows some blooming in saturated pixels.
- Ratio of peak height to inter-peak average give a Peak-to-Trough value.

CCD Diffraction Pattern

Low Noise Mode, -55°C

300s Integration Time

- Dashed line is where the line profile is taken from.
- Solid square indicates the area the vanilla sensor covered.
- 300s integration time shows some blooming in saturated pixels.
- Ratio of peak height to inter-peak average give a Peak-to-Trough value.

Vanilla CMOS Diffraction

Digital Mode, -10°C

10s Integration Time

- Longest integration time shows no blooming when saturated.
- Shortest integration time can still identify all peaks.
- Relative peak heights the same regardless of frame rate

Vanilla CMOS Diffraction

Digital Mode, -10°C

0.05s Integration Time

- Longest integration time shows no blooming when saturated.
- Shortest integration time can still identify all peaks.
- Relative peak heights the same regardless of frame rate

Noise

- Common Mode Noise removed via subtraction of 2 consecutive frames and pedestal subtraction.
- Statistical variation of resultant frame is Read Noise and Shot Noise.
- Vanilla CMOS APS noise increases greatly at -20°C
 - Component(s) not designed for lower temperatures?

Signal to Noise

- Princeton CCD maintained at a temperature of -55°C. S/N ratios calculated then averaged for different modes.
- Vanilla CMOS APS S/N calculated at -10°C in Digital mode.

- Signal to Noise ratio calculated based on the charge collected from an unsaturated spot.
- Signal to Noise ratio increases linearly with integration time

Summary of Results

	Princeton PIXIS CCD	Vanilla CMOS APS
Frame Rate	0.1 Hz – 0.003 Hz	20 Hz – 0.1 Hz (300fps ROI)
Gain	High Capacity mode – ~15e-/ADU Low Noise mode – ~3e-/ADU	Digital − 7e ⁻ /ADU
Operating Temperature	-55°C	-10°C
Read Noise	HC mode - 50e ⁻ LN mode - 20e ⁻	28e-
Peak to Trough	$10^2 - 10^4$	$10^1 - 10^3$
Signal to Noise	$10^4 - 10^6$	$10^3 - 10^4$

Conclusions

- Vanilla CMOS detector, at -10°C, showed comparable noise performance to the Princeton CCD.
 - Maximum noise of 50e⁻ for both CCD and 28e⁻ for Vanilla CMOS APS
- At comparable frame rates (0.1Hz), both detectors showed similar S/N levels
- Charge collected increases linearly with integration time.
- Further research remains to be completed on characterising the Region of Interest and higher frame rates
- Future specially designed CMOS APS could have kHz frame rates with a comparable S/N.

Dark Current

- Dark images taken at a series of frame rates, for each readout mode and temperature.
- Gradient of mean dark signal against integration time gives dark current.
- Dark current should be linear on a log-scale.
- Digital mode's on-chip electronics affected by cooling.

Imager Noise

$$\sigma$$
 total = $(\sigma^2$ shot + σ^2 fpn + σ^2 read)^{1/2}

Total noise image

Fixed noise

Statistical noise

University Camera Gain Constant

For a 'black box' camera system whose input exhibits shot noise characteristics

A sensitivity constant K(A/B) relates and transfers output signal and noise measurements to the input. In other words

$$A = BK(A/B)$$

and

$$\sigma_A = \sigma_B K(A/B)$$

Substituting the above 2 equations into $\sigma_A = A^{1/2}$ and we get

$$K(A/B) = B/\sigma^2_B$$

Input to an imaging sensor is measured in electrons (e⁻), and the output is measured in Digital Numbers (DN)

University Camera Gain Constant

$$K(A/B) = \frac{B}{\sigma_B^2}$$

Input to an imaging sensor is measured in electrons (e⁻), and the output is measured in Digital Numbers (DN)

$$K(e/DN) = \frac{DN}{\sigma_{DN}^2}$$