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CCDs collect charge within their pixel architecture, each pixel acting as a
capacitor.

Once the integration time is complete, each capacitor passes charge
seqguentially down a column.

If a pixel saturates, charge can spread to neighbouring pixels (an effect
known as blooming).

Most popularimaging device, due to their low noise and high sensitivity.
CCDs often have thick, fully depleted substrates and epi-layers.
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Conversion

» Photon to Voltage conversion done within pixel

* Integrated electronics in circuit to suit applications (eg

discriminator, flags)
* Low mass, low power cameras.
» Faster frame rates achievable.
» Charge sensedinside pixel ..
No charge transfer.
Greater radiation tolerance.

*Designreduces streaking that can be prevalent in CCDs
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he CMOS APS have fast frame rates.
— Fastest CCD operation 0.1Hz
— Fastest full frame CMOS APS operation 20Hz

On-chip processing can combine the image sensor and image processing functions,
Increasing speed and reducing physical size.

CMOS APS can read out a Region of Interest (Rol) for even faster frame rates
CMOS APS are cheaper to fabricate

CMOS APS do not have to be operated at low temperatures for reasonable signal to noise
performance.

'They can be backthinned for improved detection of UV photons

How does APS compare to CCD’s for direct detection of soft X-rays?
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Lot Vanilla APS

ade as part of the M-I* RC-UK Basic Technology
ant

20x52025um pixels (1.3cmx 1.3cm)
readout rate of 20Hz — 0.1 Hz (full frame mode)

egion of Interest (ROI) readout
Readout rate of 24kHz for 6x6 region

e sensor designed to allow back thinning

esigned full well capacity of ~100k e-

e pad layout allows for the butting of sensors on
o sides.

OT designed specifically for synchrotron
oplications

Andrew Blue PSD9 14/9/11



]_;; | University

% of Glasgow CharaCterlsatlon

Before any demonstrator use, sensors must be fully characterised for
— Noise
» Shot Noise
- FPN
* Read Noise
* Dark Current

— Gain

— Full Well Capacity
— Linearity

— Quantum Efficiency
— Stability

Similar for both CCD and CMOS devices (mostly)

Imaging devices => tested with photons (not conventional “particle physics”
approach)
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Shot Noise

» The standard deviation for the number of interactions per pixel

» Fundamentally related to the charge generated by a photon’s interaction
with a semiconductor

Fixed Pattern Noise
» In sensors, some pixels collect charge more efficiently than others
» This results in pixel-to-pixel sensitivity differences

» This noise is “Fixed” as it is not random, but is spatially the same pattern
from image to image

Read Noise -

» Defined as any noise source encountered in imagers which is not a
function of signal
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& yeieow Photon Transfer Curve

The PTC (or Photon Transfer curve) is the most curial and important analytical
technique for imaging sensors

The rms noise is plotted as a function of average signal at different light levels (or
exposure times)

The plot is made in log-log scale

Fixed | .
Read | Shot Pattern Saturation

Noise | Noise = Noise | )

Slope 0.5

Logscale R.M.S. Noise (ADU)

Slope 0

Logscale Mean (ADU)
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2Jcagov PTC Measurements

lluminations achieved using super-bright, narrow bandwidth LED (520nm)
Coupled with diffuser produced uniform illumination (<1% dev.)

The light intensity was varied by changing the voltage applied to the
LED until saturation

100 Frames at each illumination stage

Dark room or
light tight box

Shot Noise area extrapolated from fit to d

calculate the Camera Gain Constant Lo
ig
Source L L]
K (e-/D N) Diffuser Sensor
ar
Calibrated
Photodiode

‘Comparison of Methods for Estimating the Conversion Gain of
CMOS Active Pixel Sensors’
‘SE Bohndiek, A Blue, A Clark etal IEEE SENS J 8 (2008) pg 1733
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Zdckseow g Measurements

1 Example PTC with FPN
| and read noise removed
2
107: ]
IMean Gain:
K=7.3e/ADU
1
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Mean Signal (ADU)
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* Sensor used was Comparison of Normal & Backthinned APS

backthinned using a mixed
process of polishing, wet 70
etch, and plasma etch - 60 —+— Non Backthinned
S
: ~ 50 —=— Backthinned
Sensor was then flipped to | & 1
0 [0}
allow detection from back | "
] 5 30
g 20
—
0 I I I I I I
180 230 280 330 380 430 480

Wavelength (nm)

 QE Improved in the low visible and UV

* “bump” at 230nm is actually beginning of
absorption of UV in air
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Princeton PIXIS CCD Vanilla CMOS
Pixel Size 13.5 um 25 um
Number of Pixels 2048 x 2048 520 x 520
Total Dimensions 2.8x2.8cm 1.3x1.3cm
Frame Rate 0.1-0.003 Hz 20Hz — 0.1 Hz
Full Well Capacity 100 000 e 100 000 e

Operating Modes

Low Noise Input
High Capacity Output

Analogue Readout
Digital Readout

CCD used: Princeton PIXIS-XO: 2048B
— High Capacity and Low Noise modes for high or low flux applications.
— Each mode has 3 different gain modes.

APS used: Vanilla, developed by a UK funded collaboration (MI3)
— Backthinned for enhanced UV detection.
— Faster frame rates
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Experiment performed at Diamond
Light Source, Beamline 106.

Permalloy Sample

A permalloy sample was used to create
a diffraction pattern.

— Permalloy is a Nickel-Iron alloy, used
here as a representative test sample.

Soft X-rays (700 eV) diffracted.

Sensor was back-illuminated and kept
in a vacuum.

CCD kept at -55°C, Vanilla cooled from
20°C to -20°C.

Noise, Signal to Noise, Peak to Trough,
Dark Current and charge collect were
all measured with both sensors.

Detector Beamline
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aunivesiy. CCD Diffraction Pattern
Low Noise Mode, -55°C

10s Integration Time

* Dashed line is where the line profile is taken
from.

 Solid square indicates the area the vanilla
sensor covered.

 300s integration time shows some blooming
In saturated pixels.

 Ratio of peak height to inter-peak average
give a Peak-to-Trough value.

Signal (electrons)
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Pixel Number
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@ unvesiv CCD Diffraction Pattern

Glaseow

‘Low Noise Mode, -55°C

300s Integration Time o _ o
' » Dashed line is where the line profile is taken

from.

 Solid square indicates the area the vanilla
) A . . b 2
b DT sensor covered.

« 300s integration time shows some blooming
In saturated pixels.
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of Glasgow

Digital Mode, -10°C

_ _ » Longest integration time shows no
10s Integration Time blooming when saturated.

» Shortest integration time can still
identify all peaks.

* Relative peak heights the same
regardless of frame rate
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Digital Mode, -10°C

, _ » Longest integration time shows no
0.05s Integration Time blooming when saturated.

» Shortest integration time can still
identify all peaks.

* Relative peak heights the same
regardless of frame rate
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Common Mode Noise removed via subtraction of 2 consecutive frames and pedestal
subtraction.

Statistical variation of resultant frame is Read Noise and Shot Noise.

Vanilla CMOS APS noise increases greatly at -20°C
— Component(s) not designed for lower temperatures?

CCD Noise
Vanilla Noise, Digital Mode 60
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« Princeton CCD maintained at a temperature of -55°C. S/N ratios
calculated then averaged for different modes.

« Vanilla CMOSAPS S/N calculated at -10°C in Dlgltal mode.
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Signal to Noise ratio calculated based on the charge collected from
an unsaturated spot.

Signal to Noise ratio increases linearly with integration time
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Summary of Results

Princeton PIXIS CCD

Vanilla CMOS APS

Low Noise mode — ~3e/ADU

Frame Rate 0.1 Hz - 0.003 Hz 20Hz - 0.1 Hz
(300fps ROI)
Gain High Capacity mode — ~15e/ADU Digital — 7e/ADU

perating Temperature -95°C -10°C
Read Noise HC mode - 50e 28e
LN mode - 20e-
Peak to Trough 102 - 10* 10! - 10°
Signal to Noise 10* - 10° 10° - 10
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Vanilla CMOS detector, at -10°C, showed comparable noise
performance to the Princeton CCD.

— Maximum noise of 50e- for both CCD and 28e- for Vanilla CMOS
APS

At comparable frame rates (0.1Hz), both detectors showed similar
S/N levels

Charge collected increases linearly with integration time.

Further research remains to be completed on characterising the
Region of Interest and higher frame rates

Future specially designed CMOS APS could have kHz frame rates
with a comparable S/N.
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B ey Dark Current

» Dark images taken at a
series of frame rates, for
each readout mode and
1 temperature.

+ | e« Gradient of mean dark
signal against integration
time gives dark current.

| e Dark current should be
1 linear on a log-scale.

Oy =233* + 2098

* Digital mode’s on-chip
o0l O 1 1 electronics affected by
- | cooling.

Temperature (Degrees C)
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W sohseor Camera Gain Constant

A

For a ‘black box’ camera system whose input exhibits shot noise characteristics

o= Al

other words

and

K (A/B)

B
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. A sensitivity constant K(A/B) relates and transfers output signal and noise measurements to the input. In

A= BK(A/B)

oa = 6gK(A/B)

Substituting the above 2 equations into 6,= A¥2 and we get

K(A/B)= B/o2g

Input to an imaging sensor is measured in electrons (e-), and the output is measured in Digital Numbers (DN)



iy ey Camera Gain Constant

K(A/B) = %
B

* Inputto an imaging sensoris measured in electrons (e°), and the
output is measured in Digital Numbers (DN)
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