Performance of the Resistive Plate Chambers in the CMS experiment

Filip Thyssen for the CMS Collaboration

2011.09.14

• • • • • • • • • • •

Outline

The Compact Muon Solenoid Experiment

Large Hadron Collider Compact Muon Solenoid Muon Subdetectors Resistive Plate Chambers

2 RPC Detector Performance

Hit Efficiencies Hit Resolutions High Voltage Scan and Results

3 RPC Trigger Performance CMS Trigger system RPC Pattern Comparator

4 Background studies

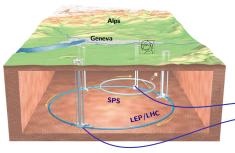
5 Conclusions

Outline

1 The Compact Muon Solenoid Experiment

Large Hadron Collider Compact Muon Solenoid Muon Subdetectors Resistive Plate Chambers

2 RPC Detector Performance


Hit Efficiencies Hit Resolutions High Voltage Scan and Results

3 RPC Trigger Performance CMS Trigger system RPC Pattern Comparator

4 Background studies

5 Conclusions

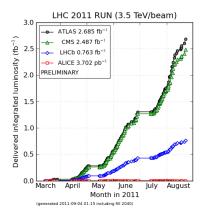
The Compact Muon Solenoid Experiment The Large Hadron Collider

Filip Thyssen (Ghent University)

- Ø 8.6 km p-p collider
- Collisions at $\sqrt{s} = 7 \text{ TeV}$
- Luminosity $\approx 10^{33}\,\text{cm}^{-2}\,\text{s}^{-1}$

イロト イ団ト イヨト イヨ

2011.09.14

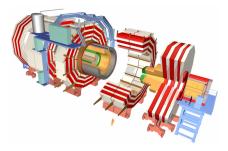

4 / 24

- 4 collision points serving 6 experiments
 - ATLAS
 - 🗕 CMS
 - ALICE
 - LHCb
 - LHCf

Performance of the CMS RPCs

TOTEM

The Compact Muon Solenoid Experiment The Large Hadron Collider



- Ø 8.6 km p-p collider
- Collisions at $\sqrt{s} = 7 \text{ TeV}$
- Luminosity $pprox 10^{33} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$

Image: A math the second se

- 4 collision points serving 6 experiments
 - ATLAS
 - CMS
 - ALICE
 - LHCb
 - LHCf
 - TOTEM

The Compact Muon Solenoid Experiment The Detector

Compact Muon Solenoid

 $12\,500\,\text{t},\,21.6\,\text{m}$ long, ø $15\,\text{m}$

- Pixel and MicroStrip tracker Silicon, 75×10^6 channels
- Electromagnetic Calorimeter Scintillating PbWO₄ crystals
- Hadronic Calorimeter Plastic scintillator / brass
- SuperConducting Solenoid
 - 3.8 T magnetic field
- Muon Subdetectors

 $\Delta p_T/p_T\sim 5\%$ at $1\,\text{TeV/c}$

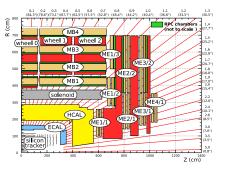
• • • • • • • • • • • •

Iron return yoke

The Compact Muon Solenoid Experiment The Detector

Compact Muon Solenoid

 $12\,500\,t,\,21.6\,m$ long, ø $\,15\,m$

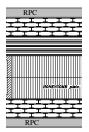

- Pixel and MicroStrip tracker Silicon, 75×10^6 channels
- Electromagnetic Calorimeter Scintillating PbWO₄ crystals
- Hadronic Calorimeter Plastic scintillator / brass
- SuperConducting Solenoid
 - 3.8 T magnetic field
- Muon Subdetectors

 $\Delta p_T/p_T\sim 5\%$ at $1\,\text{TeV/c}$

• • • • • • • • • • • •

Iron return yoke

The Compact Muon Solenoid Experiment The Muon Subdetectors



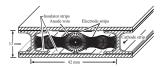
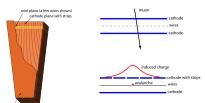

- 3 gaseous particle detector technologies
- Cylindrical barrel region
 - MB: Muon Barrel
 - 4 coaxial stations interleaved with iron return yokes
 - Drift Tubes and Resistive Plate Chambers
- Planar endcap regions
 - ME: Muon Endcap
 - 4 planar stations interleaved with iron return yokes
 - Cathode Strip Chambers and Resistive Plate
 Chambers

Image: A math the second se

The Compact Muon Solenoid Experiment


- 250 Drift Tube Chambers
 - Barrel region $|\eta| < 1.2$
 - 4 stations, 5 wheels, 12 sectors
 - (4+4) layers measuring ϕ
 - 4 layers measuring z in stations 1-3

• • • • • • • • • • • •

- Local segment per chamber
- Spatial resolution $\sim 250\,\mu{
 m m}$

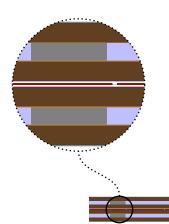
The Compact Muon Solenoid Experiment

The Muon Subdetectors

7 trapezoidal panels forming 6 gas gaps

- 250 Drift Tube Chambers
 - Barrel region $|\eta| < 1.2$
 - 4 stations, 5 wheels, 12 sectors
 - (4 + 4) layers measuring φ
 - 4 layers measuring z in stations 1-3
 - Local segment per chamber
 - Spatial resolution ~ 250 μm
- 540 Cathode Strip Chambers
 - Endcap Region $0.9 < |\eta| < 2.4$
 - 2 × 4 stations, 1 − 3 rings, 18 − 36 sectors
 - 6 layers of strips per chamber measuring ϕ
 - 6 layers of anode wires per chamber measuring r

- Local segment per chamber
- Spatial resolution $\sim 150\,\mu{
 m m}$


The Compact Muon Solenoid Experiment The Muon Subdetectors

- 250 Drift Tube Chambers
 - Barrel region $|\eta| < 1.2$
 - 4 stations, 5 wheels, 12 sectors
 - (4 + 4) layers measuring ϕ
 - 4 layers measuring z in stations 1-3
 - Local segment per chamber
 - Spatial resolution ~ 250 μm
- 540 Cathode Strip Chambers
 - Endcap Region $0.9 < |\eta| < 2.4$
 - 2 × 4 stations, 1 − 3 rings, 18 − 36 sectors
 - 6 layers of strips per chamber measuring ϕ
 - 6 layers of anode wires per chamber measuring r
 - Local segment per chamber
 - Spatial resolution $\sim 150\,\mu{
 m m}$
- 480 + 432 Resistive Plate Chambers
 - Both regions, $|\eta| < 1.6$
 - Barrel: 4 stations, 1-2 layers, 5 wheels, 12 sectors

- Endcap: 2 × 3 stations, 2 rings, 36 sectors
- Local hit per chamber
- Time resolution \leq 3 ns

The Compact Muon Solenoid Experiment The Resistive Plate Chambers

- 2 mm bakelite plates, $\rho \sim 10^{10} \,\Omega$ cm, coated with linseed oil on the inside, graphite on the outside
 - 2 mm gas gaps with 100 mm \times 100 mm grid of \emptyset 8 mm spacers
 - Double-gap with common \sim 20 mm copper readout strips
- Townsend Avalanche mode
- Time resolution $\lesssim 3 \, \text{ns}$
- Gas mixture

$C_2H_2F_4$	iC ₄ H ₁₀	SF ₆
96.2%	3.5%	0.3%

• • • • • • • • • • •

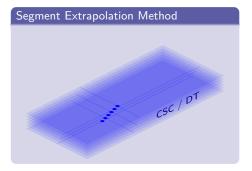
with $\sim 45\%$ humidity

Outline

The Compact Muon Solenoid Experiment

Large Hadron Collider Compact Muon Solenoid Muon Subdetectors Resistive Plate Chambers

2 RPC Detector Performance

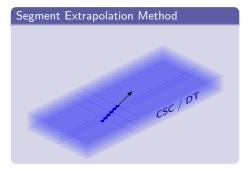

Hit Efficiencies Hit Resolutions High Voltage Scan and Results

3 RPC Trigger Performance CMS Trigger system RPC Pattern Comparator

- 4 Background studies
- **5** Conclusions

RPC Hit Efficiencies

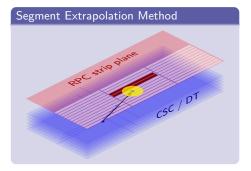
Using CSC and DT segments, RPC efficiencies can be defined without final physics objects This allows storage of high statistics with low impact on the High Level Trigger



Filip Thyssen (Ghent University)

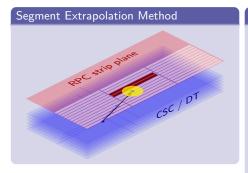
RPC Hit Efficiencies

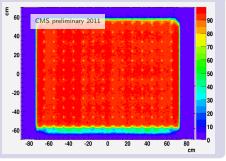
Using CSC and DT segments, RPC efficiencies can be defined without final physics objects This allows storage of high statistics with low impact on the High Level Trigger



Filip Thyssen (Ghent University)

RPC Hit Efficiencies

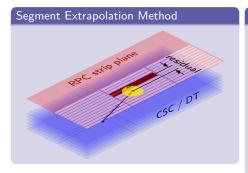

Using CSC and DT segments, RPC efficiencies can be defined without final physics objects This allows storage of high statistics with low impact on the High Level Trigger



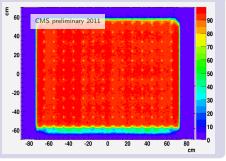
RPC Hit Efficiencies

Using CSC and DT segments, RPC efficiencies can be defined without final physics objects This allows storage of high statistics with low impact on the High Level Trigger

Hit Efficiency for a single chamber



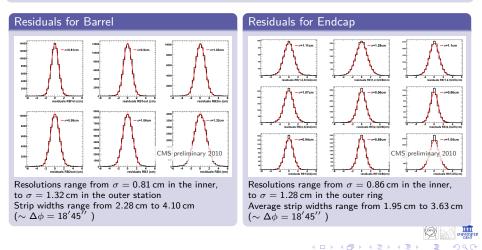
• • • • • • • • • • • •

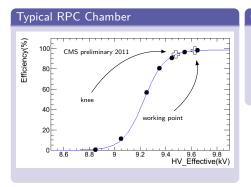


RPC Hit Efficiencies

Using CSC and DT segments, RPC efficiencies can be defined without final physics objects This allows storage of high statistics with low impact on the High Level Trigger

Hit Efficiency for a single chamber

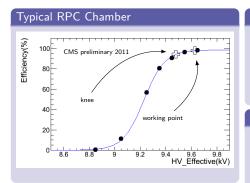



• • • • • • • • • • • •

RPC Hit Resolutions

Using the aforementioned residuals, RPC hit resolutions can be defined for the different strip widths throughout the detector

Goal


- To assure high efficiency
- To minimize pressure and temperature dependency
- To avoid unnecessary stress on the detector

• • • • • • • • • • •

To avoid increasing clustersize

The avalanche *P*, *T* and HV dependence can be summarized in HV_{eff} :

$$\label{eq:HVeff} \begin{split} \mathsf{HV}_{\mathrm{eff}} &= \mathsf{HV} \frac{P_0}{P} \, \frac{T}{T_0} \\ (P_0 = 965 \ \mathrm{mbar}, \ T_0 = 293 \ \mathrm{K}) \end{split}$$

Fitted sigmoidal efficiency curve

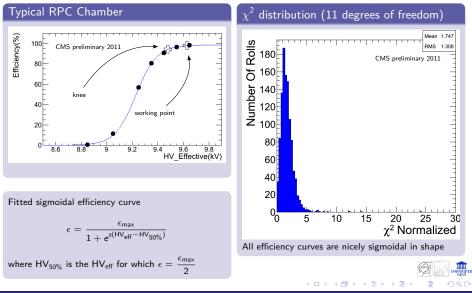
$$\epsilon = rac{\epsilon_{ ext{max}}}{1 + e^{s(ext{HV}_{ ext{eff}} - ext{HV}_{ ext{50\%}})}}$$

where HV_{50\%} is the HV_{eff} for which $\epsilon = rac{\epsilon_{\max}}{2}$

Goal

- To assure high efficiency
- To minimize pressure and temperature dependency
- To avoid unnecessary stress on the detector
- To avoid increasing clustersize

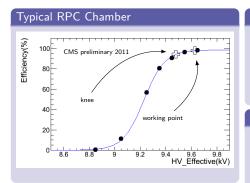
Method


- Data was taken at 11 HV points between 8.5 kV and 9.7 kV
- A dedicated data stream provides high statistics in limited time
- A sigmoid was fitted to the measured hit efficiencies per roll
- A working point HV_{WP} is defined per chamber

$$\mathsf{HV}_{\mathsf{WP}} = \mathsf{HV}_{\mathsf{knee}} + \begin{cases} 100 \, \mathsf{V} \; (\mathsf{barrel}) \\ 150 \, \mathsf{V} \; (\mathsf{endcap}) \end{cases}$$

where HV_{knee} is the HV_{eff} for which efficiency $\epsilon = 0.95 \cdot \epsilon_{max}$

Filip Thyssen (Ghent University)


Performance of the CMS RPCs

Filip Thyssen (Ghent University)

Performance of the CMS RPCs

2011.09.14 11 / 24

Fitted sigmoidal efficiency curve

$$\epsilon = rac{\epsilon_{ ext{max}}}{1 + e^{s(ext{HV}_{ ext{eff}} - ext{HV}_{ ext{50\%}})}}$$

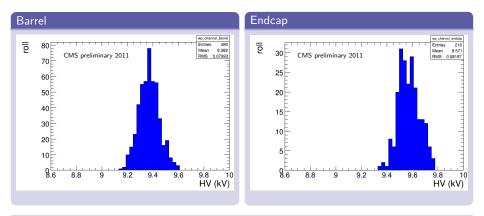
where HV_{50\%} is the HV_{eff} for which $\epsilon = rac{\epsilon_{\max}}{2}$

Goal

- To assure high efficiency
- To minimize pressure and temperature dependency
- To avoid unnecessary stress on the detector
- To avoid increasing clustersize

Method

- Data was taken at 11 HV points between 8.5 kV and 9.7 kV
- A dedicated data stream provides high statistics in limited time
- A sigmoid was fitted to the measured hit efficiencies per roll
- A working point HV_{WP} is defined per chamber


$$\mathsf{HV}_{\mathsf{WP}} = \mathsf{HV}_{\mathsf{knee}} + \begin{cases} 100 \, \mathsf{V} \; (\mathsf{barrel}) \\ 150 \, \mathsf{V} \; (\mathsf{endcap}) \end{cases}$$

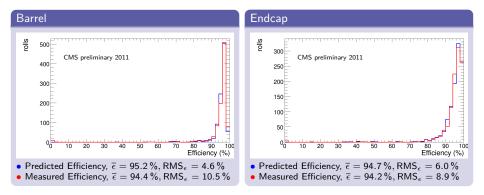
where HV_{knee} is the HV_{eff} for which efficiency $\epsilon = 0.95 \cdot \epsilon_{max}$

Filip Thyssen (Ghent University)

Performance of the CMS RPCs

Distribution of the calculated HV_{working point}

The difference between Barrel and Endcap RPCs comes from a difference in construction techniques A procedure of averaging is applied since different rolls share a High Voltage supply channel

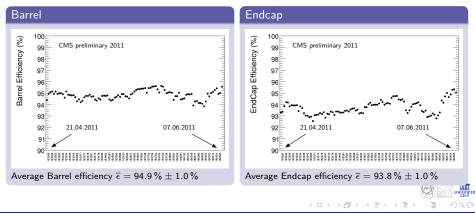

Filip Thyssen (Ghent University)

Performance of the CMS RPCs

2011.09.14 12 / 24

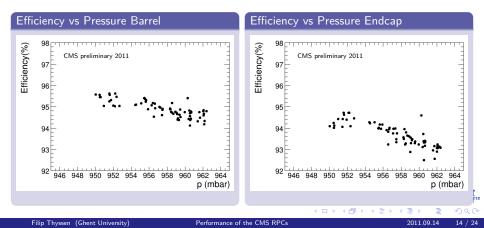
< □ > < □ > < □ > < □ > < □ >

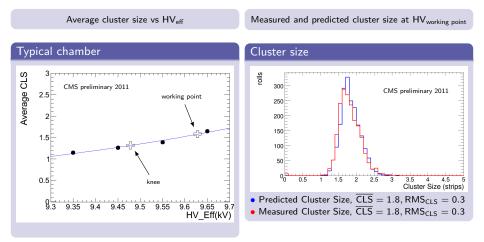
Measured and predicted hit efficiency for Barrel and Endcap



Prediction from sigmoidal interpolation

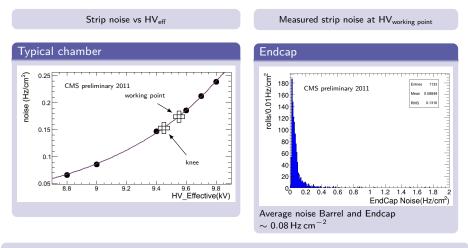
< □ > < 同 >


Average hit efficiency for Barrel and Endcap


Remains a 1% efficiency variation due to changes in pressure (CMS Temperature is almost constant) A pressure correction of the Applied High Voltage has been introduced recently (to be evaluated in the near future)

Average hit efficiency for Barrel and Endcap

Remains a 1% efficiency variation due to changes in pressure (CMS Temperature is almost constant) A pressure correction of the Applied High Voltage has been introduced recently (to be evaluated in the near future)


The cluster size is defined as the number of contiguous strips associated to a hit; on average it remains within specifications, i.e. below 2 strips (important for trigger algorithm)

Filip Thyssen (Ghent University)

Performance of the CMS RPCs

2011.09.14 15 / 24

イロト イ団ト イヨト イヨト

The noise is computed measuring hit rates during periods without beam collisions Most chambers show an intrinsic noise below $0.5 \,\text{Hz}\,\text{cm}^{-2}$, negligible for accidentals in the trigger system

Filip Thyssen (Ghent University)

Performance of the CMS RPCs

2011.09.14 16 / 24

イロト イヨト イヨト イヨ

Eff

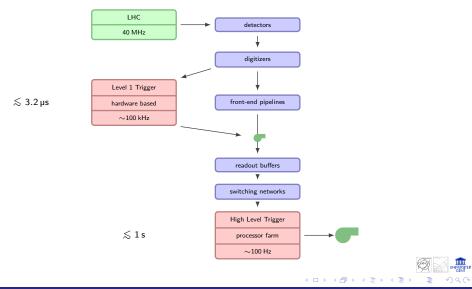
Outline

The Compact Muon Solenoid Experiment

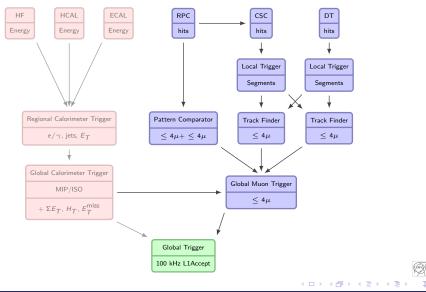
Large Hadron Collider Compact Muon Solenoid Muon Subdetectors Resistive Plate Chambers

2 RPC Detector Performance

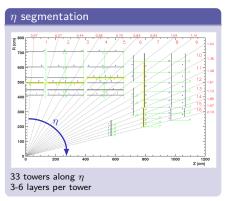
Hit Efficiencies Hit Resolutions High Voltage Scan and Results

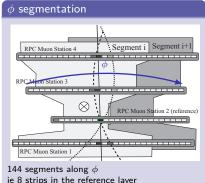

3 RPC Trigger Performance CMS Trigger system RPC Pattern Comparator

4 Background studies


5 Conclusions

<ロト < 回 > < 回 > < 回 > < 回 >


RPC Trigger Performance CMS Trigger system


RPC Trigger Performance CMS Trigger system

RPC Trigger Pattern Comparator Algorithm

The RPC subdetector is divided in $\eta-\phi$ cones

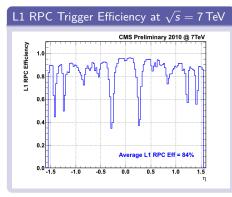
Hits are matched to Monte Carlo generated patterns in FPGAs

A majority rule defines if a pattern (μ) is found in each cone

2010: 4/6 in Barrel, 3/3 in Endcap

2011: 3/6 in Barrel, 3/3 in Endcap

A sorting algorithm brings the number back to \leq 4 μ per region (Barrel and Endcap)

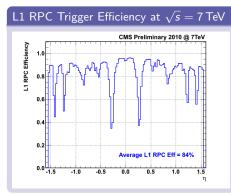

Filip Thyssen (Ghent University)

Performance of the CMS RPCs

2011.09.14 19 / 24

Eff

RPC Trigger RPC Trigger Performance


- Reconstructed muons with *p*_T ≥ 7 GeV/c
- Associated L1 CSC or DT trigger

Combination of	Approximate contribution to inefficiency		
	Barrel	Endcap	
	$ (\eta < 0.8)$	$(1.25 < \eta < 1.6)$	
Geometrical acceptance	7 %	8%	
Hit efficiency	6%	12 %	
Intrinsic PAC efficiency	3%	<1%	

(estimation accuracy limited due to track association uncertainty (~ 1 %))

Filip Thyssen (Ghent University)

RPC Trigger RPC Trigger Performance

2010 data

- Reconstructed muons with *p*_T ≥ 7 GeV/c
- Associated L1 CSC or DT trigger

2011

- Changed majority rule from 4/6 to 3/6 in Barrel
- Improved detector performance

future

Addition of the 4th Endcap plane

Combination of	Approximate contribution to inefficiency		
	Barrel	Endcap	
	$(\eta < 0.8)$	$(1.25 < \eta < 1.6)$	
Geometrical acceptance	7 %	8 %	
Hit efficiency	6 %	12 %	
Intrinsic PAC efficiency	3 %	<1%	

(estimation accuracy limited due to track association uncertainty (~ 1 %))

Filip Thyssen (Ghent University)

Outline

The Compact Muon Solenoid Experiment

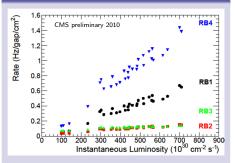
Large Hadron Collider Compact Muon Solenoid Muon Subdetectors Resistive Plate Chambers

2 RPC Detector Performance

Hit Efficiencies Hit Resolutions High Voltage Scan and Results

3 RPC Trigger Performance CMS Trigger system RPC Pattern Comparator

4 Background studies

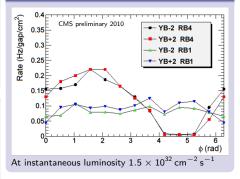

5 Conclusions

Background studies

- Hit counting
 - counted after discriminators
 - no triggers involved
 - hits within 25 ns bunch-crossing window
- Differences in rate
 - inner: HCAL particle leakage
 - outer: slow neutron gas
 - other rings: protected by return yoke
 - azimuthal assymetry due to wheel supports steel floor

Barrel r dependence

< □ > < 同 > < 回 > < Ξ > < Ξ



Background studies

- Hit counting
 - counted after discriminators
 - no triggers involved
 - hits within 25 ns bunch-crossing window
- Differences in rate
 - inner: HCAL particle leakage
 - outer: slow neutron gas
 - other rings: protected by return yoke
 - azimuthal assymetry due to wheel supports steel floor

Barrel ϕ assymetry for given run

< □ > < 同 > < 回 > < Ξ > < Ξ

Filip Thyssen (Ghent University)

Performance of the CMS RPCs

2011.09.14 22 / 24

Outline

The Compact Muon Solenoid Experiment

Large Hadron Collider Compact Muon Solenoid Muon Subdetectors Resistive Plate Chambers

2 RPC Detector Performance

Hit Efficiencies Hit Resolutions High Voltage Scan and Results

3 RPC Trigger Performance CMS Trigger system RPC Pattern Comparator

4 Background studies

5 Conclusions

- The performance of the CMS RPC subdetector has been investigated in depth
- Both normal and dedicated runs have contributed to a good understanding of the detector
- Resulting measures contributed to its overall efficiency and stability
- The background is being monitored and understood
- The RPCs are ready for further LHC collisions

(日) (同) (三) (三) (三)