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The Fermi observatory

Large Area Telescope (LAT)

I Pair conversion telescope.

I Energy range: 20 MeV to over 300 GeV

I Large �eld of view (� 2:4 sr): 20% of
the sky at any time, all parts of the sky
for 30 minutes every 3 hours.

I Long observation time: 5 years
minimum lifetime, 10 years planned,
85% duty cycle.

Gamma-ray Burst Monitor (GBM)

I 12 NaI and 2 BGO detectors.

I Energy range: 8 keV{40 MeV.
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The Fermi-LAT Collaboration

PI: Peter Michelson (Stanford & SLAC)

I 479 Members, including � 100 postdoc
(plus 120 technical members)

I Cooperation between NASA and DOE, with
key international contributions from France,
Italy, Japan and Sweden

I Managed at Stanford Linear Accelerator
Center (SLAC)

United States

I Stanford University (SLAC and
HEPL/Physics)

I Goddard Space Flight Center

I Naval Research Laboratory

I Ohio State University

I California State University at Sonoma

I University of California at Santa Cruz

I University of Washington

Sweden

I Royal Institute of
Technology

I Stockholm University

France

I IN2P3

I CEA/Saclay

Japan

I Hiroshima University

I ISAS/JAXA, RIKEN

I Tokyo Tech.

Italy

I INFN

I INAF

I ASI
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The Large Area Telescope

Large Area telescope

I Overall modular design.

I 4� 4 array of identical towers (each one including a tracker and a calorimeter module).

I Tracker surrounded by an Anti-Coincidence Detector (ACD)

Tracker

I Silicon strip detectors, W
conversion foils; 1.5 radiation
lengths on-axis.

I 10k sensors, 73 m2 of silicon
active area, 1M readout
channels.

I High-precision tracking, short
instrumental dead time.

Anti-Coincidence Detector

I Segmented (89 tiles) to
minimize self-veto at high
energy.

I 0.9997 average e�ciency
(8 �ber ribbons covering
gaps between tiles).

Calorimeter

I 1536 CsI(Tl) crystal; 8.6 radiation
lengths on-axis.

I Hodoscopic, 3D shower pro�le
reconstruction for leakage correction.
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Tracker/converter design

I 19 tray structures
I Carbon structure provides a basic

mechanical frame (sti�ness)

I 18 x-y detection planes
I Single sided SSDs, below the W foils

I Front: 12 planes with 0.03 X0 converter
I Better angular resolution

I Back: 4 planes with 0.18 X0 converters
I Increase the conversion e�ciency (better

e�ective area)

I Bottom: 2 planes with no converter
I Tracker trigger needs at least 3 x-y

layers (main instrument trigger)

I Total depth: 1.5 X0 on axis
I > 60% photons conversion fraction
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Tracker design: mechanics

I Readout electronics on the tray
sides: 90� pitch adapters, read
out via at cables

I Less than 2 mm spacing between
silicon layers

I 2 mm inter-tower separation to
minimize dead area
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The Silicon Strip Detectors

Coupling AC
Outer size 8:95� 8:95 cm2

Strip pitch 228 �m
Thickness 400 �m

Depletion voltage < 120 V
Leakage current 1 nA/cm2 150 V

Breakdown voltage > 175 V
Bad channels � 10�4

# SSD tested 12500
# single strip tests � 30M
Rejected SSDs 0.6%

I 18 ight towers integrated and
tested in 9 months
I Flight Module A su�ering from

some processing issues during
the set up of the assembly chain
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The Tracker electronics system

Readout design

I 24 front-end chips and 2 controllers
handle one Si layer

I Data can shift left/right to either of
the controllers (can bypass a dead
chip)

I Zero suppression takes place in the
controllers (hit strips + layer OR
TOT in the data stream)

I Two at cables complete the
redundancy

Key features

I Low power consumption (� 200 �W/channel)

I Low noise occupancy (� 1 noise hit per event in the full LAT)

I Self-triggering (three x{y planes in a row, i.e. sixfold coincidence)

I Redundancy: Si planes may be read out from the right or from the left controller chip

I On board zero suppression
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The launch
More than three years on orbit

Launch

I Launched on June 11, 2008 from the Kennedy Space Center.

I Launch vehicle: Delta 7290H-10.

I Circular orbit, 565 km altitude, 25:6� inclination.

I Some of the milestones: � 190 billion triggers � 35 billion
events down-linked to ground, � 610 million photon candidates
released to the community, > 99% up-time.
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(Some) Fermi Science Highlights !

EGB

CREs

LAT Pulsars

I Di�use -ray emission
I no features in the Extra-galactic Background

Light spectrum

I Dark Matter WIMP annihilation
I constraints are close to thermal limit below

10 GeV

I Cosmic-ray Electrons and positrons
I spectrum measured from 7 GeV up to 1 TeV
I rising positron fraction up to 100 GeV

I Gamma-ray Bursts
I high energy emission
I testing Lorentz Invariance Violation

I Pulsars
I 88 pulsars now known: radio loud,

gamma-ray selected, millisecond pulsars

I Active Galactic Nuclei, pulsar wind nebulae,
novae, solar are, moon emission. . .
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LAT TKR monitoring

Stip Hit occupancy for Tkr Tower 3I Relevant tracker quantities are
monitored on a run by run basis:
I noise occupancy;
I hit and trigger e�ciency;
I Time over Threshold distributions;
I alignment.

I Run selection for this summary:
I roughly all the runs taken in the nominal data taking con�guration;
I more than 1500 s long, most of them are � 5000 s long and contain
�2M events;

I not including the early phase of the Launch and Early Orbit

) numerology: � 17000 runs, from September 2008 to June 2011.
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Hit efficiency
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Time over threshold
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New TOT charge scale (SSC181)

trigger window set to 14 ticks

Timing change

I Long term trending of the position of the MIP peak in the Tracker
Time Over Threshold (averaged over the LAT)

I The two noticeable discontinuities are due to hardware or software
changes
I Analog signal remarkably stable (within much less than 1%) since

the last two changes.
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Noise occupancy
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I Long term trending of the noise occupancy for a typical silicon layer
I Measured accumulating counts on the silicon layers far from

triggering towers (and cross-checked with dedicated periodic triggers)

I Noise occupancy at the level of 4� 10�3 for a layer (1536 strips)
I Translating into 2{3� 10�6 at the single strip level (dominated by

accidental coincidences). . .
I . . . or 2{3 noise hits per event in the full LAT
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Strip masks trending
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Full LAT

Tower 0
Tower 3

I Some 200 noisy strip masked prior to launch (0.02%)

I 213 additional noisy strips masked over the �rst three years of
mission, for a total of 416 (0.05%)

I Two major contributors
I Tower 0 (Flight Module A): the �rst one being assembled, su�ering

from some processing issues|showed some evolution throughout the
�rst year

I Tower 3 (Flight Module 15): noise issue in one ladder|more on that
later
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A minor hardware issue
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I Noise in one silicon ladder steadily increasing since January 2010
I . . . just one out of the 2304 silicon ladders in the LAT
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A minor hardware issue
To be debugged in space

Tower 3 bias current

Time UTC

D
et
ec
to
r
b
ia
s
cu
rr
en
t

I One power supply per tower
I We only monitor the currents at the tower level (i.e. each HV line is

biasing 36� 4 = 144 silicon ladders)
I Not trivial to measure a relative increase in the leakage current at

the level of a single ladder

I Test runs with reduced bias HV (40, 60, 80 V vs. nominal 105 V)
I Normal data taking, charge injection calibration

I No obvious root cause identi�ed
I Even if we lose the entire ladder it's less than 0.05% of the tracker
I No evidence of similar phenomena in any other part of the LAT
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Conclusions

I The LAT tracker is the largest solid-state tracker ever built for a
space application
I 73 m2 of single-sided silicon strip detectors
I Almost 900,000 independent electronics channels

I All design goals met with large margins
I Single-plane hit e�ciency > 99%
I Noise occupancy at the level of 10�6

I 160 W of power consumption

I Major science results obtained during
the �rst three years

) Fermi 2-year point source catalog
1873 sources, including 12 extended!
http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2yr catalog

I No noticeable degradation of
the performances observed

) Fermi is a 5 to 10 years mission!

Galactic All Sky

Galactic Center
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Mapping of the SAA

I The South Atlantic Anomaly is a region with a high density of
trapped particles (mostly low-energy protons)

I We do not take physics data in the SAA (ACD HV is lowered) but
we do record the trigger rate from CAL and TKR

I The mapping of the SAA was one of the goals of the commissioning
phase, now routinely monitored
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Trigger

I Hardware trigger at the single tower level
I All subsystems contribute
I TKR: three consecutive xy planes in a row hit
I CAL LO: single CAL log with more than 100 MeV (adjustable)
I CAL HI: single CAL log with more than 1 GeV (adjustable)
I ROI: MIP signal in one of the ACD tiles close to the triggering TKR

tower
I CNO: heavy ion signal in one of the ACD tiles

I Event readout
I Each particular combination of trigger primitives is mapped into a so

called trigger engine (determines hardware pre-scale factors, and
readout mode)

I Upon a valid L1 trigger the entire detector is read out
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Onboard filter

I Filter basics
I Need software on-board �ltering to �t the data volume into the

allocated bandwidth
I Full instrument information available to the on-board processor
I Flexible, fully con�gurable (the following reects the nominal science

data taking setting)

I Nominal implementation
I Each event is presented to up to 4 (adjustable) di�erent �lters
I GAMMA: rough photon selection (main source of science data)
I HIP: heavy ions (continuously collected for calibration purposes)
I MIP: used in calibration runs
I DGN: con�gured to provide a pre-scaled (�250) unbiased sample of

all trigger types
I Final gamma selection performed on ground (see the following)
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Instrument design drivers

I Science design drivers
I E�ective area and angular resolution: design of the tracker converter
I Energy range and resolution: thickness and design of the calorimeter
I Charged particle background rejection: mainly driving the ACD

design, but also impacts the tracker and calorimeter design, along
with the trigger and data ow

I Mission design drivers
I Launcher vehicle: instrument footprint (1:8� 1:8 m2)
I Mass budget (3000 kg): maximum depth of the calorimeter
I Power budget (650 W overall): maximum number of electronics

channels in the tracker|i.e. strip pitch and number of layers
I Launch and operation in space: sustain the vibrational loads during

the launch, sustain thermal gradients, operate in vacuum
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Tracker reconstruction: low energy
Simulated 80 MeV gamma-ray

x

z

I Angular resolution dominated by multiple scattering
I Call for thin converters. . .
I . . . but need material to convert the gamma-rays!
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Tracker reconstruction: high energy
Simulated 150 GeV gamma-ray

y

z

I Angular resolution determined by hit resolution and lever arm
I Call for �ne SSD pitch, but power consumption is a strong constraint

I Backsplash from the calorimeter also a potential issue
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