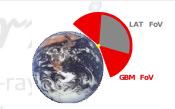

The Silicon Strip Tracker of the Fermi Large Area Telescope

> Johan Bregeon INFN-Pisa johan.bregeon@pi.infn.it

on behalf of the Fermi LAT collaboration


PSD9 2011, Aberystwyth, September 13th 2011

The Fermi observatory

Large Area Telescope (LAT)

- ▶ Pair conversion telescope.
- Energy range: 20 MeV to over 300 GeV
- ► Large field of view (≈ 2.4 sr): 20% of the sky at any time, all parts of the sky for 30 minutes every 3 hours.
- Long observation time: 5 years minimum lifetime, 10 years planned, 85% duty cycle.

Gamma-ray Burst Monitor (GBM)

- ▶ 12 Nal and 2 BGO detectors.
- ▶ Energy range: 8 keV-40 MeV.

THE FERMI-LAT COLLABORATION

United States

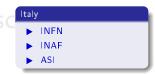
- Stanford University (SLAC and HEPL/Physics)
- Goddard Space Flight Center
- Naval Research Laboratory
- Ohio State University
- California State University at Sonoma
- University of California at Santa Cruz
- University of Washington

PI: Peter Michelson (Stanford & SLAC)

- ► 479 Members, including ~ 100 postdoc (plus 120 technical members)
- Cooperation between NASA and DOE, with key international contributions from France, Italy, Japan and Sweden
- Managed at Stanford Linear Accelerator Center (SLAC)

Sweden

- Royal Institute of Technology
- Stockholm University


France

- ► IN2P3
- ▶ CEA/Saclay

Japan

- Hiroshima University
- ISAS/JAXA, RIKEN
- Tokyo Tech.

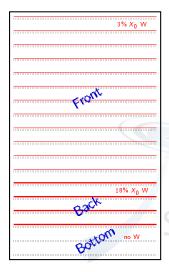
THE LARGE AREA TELESCOPE

Large Area telescope

- Overall modular design.
- \blacktriangleright 4 \times 4 array of identical towers (each one including a tracker and a calorimeter module).
- Tracker surrounded by an Anti-Coincidence Detector (ACD)

Tracker

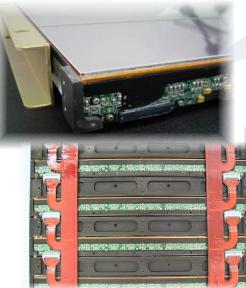
- Silicon strip detectors, W conversion foils; 1.5 radiation lengths on-axis.
- 10k sensors, 73 m² of silicon active area, 1M readout channels.
- High-precision tracking, short instrumental dead time.


Anti-Coincidence Detector

- Segmented (89 tiles) to minimize self-veto at high energy.
- 0.9997 average efficiency (8 fiber ribbons covering gaps between tiles).

Calorimeter

- 1536 Csl(Tl) crystal; 8.6 radiation lengths on-axis.
- Hodoscopic, 3D shower profile reconstruction for leakage correction.

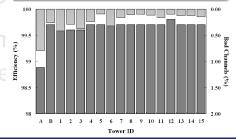

TRACKER/CONVERTER DESIGN

19 tray structures

- Carbon structure provides a basic mechanical frame (stiffness)
- 18 x-y detection planes
 - Single sided SSDs, below the W foils
- ▶ Front: 12 planes with 0.03 X₀ converter
 - Better angular resolution
- Back: 4 planes with 0.18 X_0 converters
 - Increase the conversion efficiency (better effective area)
- Bottom: 2 planes with no converter
 - Tracker trigger needs at least 3 x-y
 layers (main instrument trigger)
- ▶ Total depth: 1.5 X₀ on axis
 - \blacktriangleright > 60% photons conversion fraction

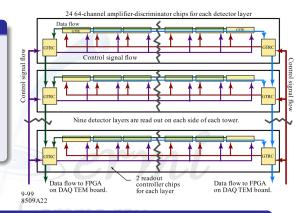

TRACKER DESIGN: MECHANICS

- Readout electronics on the tray sides: 90° pitch adapters, read out via flat cables
- Less than 2 mm spacing between silicon layers
- 2 mm inter-tower separation to minimize dead area



THE SILICON STRIP DETECTORS

- 18 flight towers integrated and tested in 9 months
 - Flight Module A suffering from some processing issues during the set up of the assembly chain


Coupling	AC
Outer size	$8.95 \times 8.95 \text{ cm}^2$
Strip pitch	228 μ m
Thickness	400 μ m
Depletion voltage	<120 V
Leakage current	1 nA/cm ² 150 V
Breakdown voltage	> 175 V
Bad channels	$pprox 10^{-4}$
# SSD tested	12500
# single strip tests	$\approx 30 M$
Rejected SSDs	0.6%

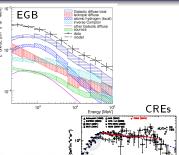
THE TRACKER ELECTRONICS SYSTEM

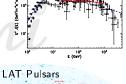
- 24 front-end chips and 2 controllers handle one Si layer
- Data can shift left/right to either of the controllers (can bypass a dead chip)
- Zero suppression takes place in the controllers (hit strips + layer OR TOT in the data stream)
- Two flat cables complete the redundancy

Key features

- Low power consumption (\approx 200 μ W/channel)
- \blacktriangleright Low noise occupancy (pprox 1 noise hit per event in the full LAT)
- ▶ Self-triggering (three x-y planes in a row, i.e. sixfold coincidence)
- Redundancy: Si planes may be read out from the right or from the left controller chip
- On board zero suppression

THE LAUNCH More than three years on orbit

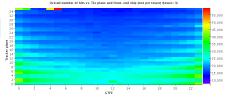



(Some) Fermi Science Highlights !

- Diffuse γ -ray emission
 - no features in the Extra-galactic Background Light spectrum
- Dark Matter WIMP annihilation
 - constraints are close to thermal limit below 10 GeV
- Cosmic-ray Electrons and positrons
 - spectrum measured from 7 GeV up to 1 TeV
 - rising positron fraction up to 100 GeV
- Gamma-ray Bursts
 - high energy emission
 - testing Lorentz Invariance Violation
- Pulsars

Johan Bregeon (INFN)

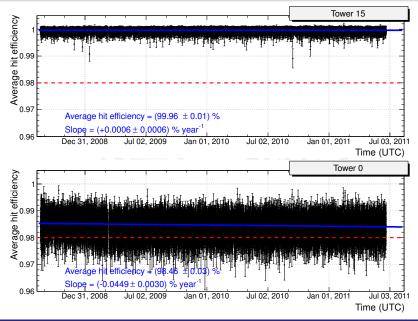
- 88 pulsars now known: radio loud, gamma-ray selected, millisecond pulsars
- ► Active Galactic Nuclei, pulsar wind nebulae, novae, solar flare, moon emission...



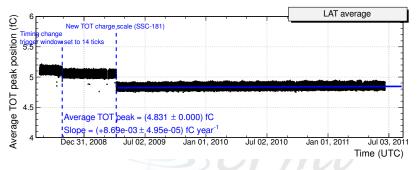
LAT TKR MONITORING

- Relevant tracker quantities are monitored on a run by run basis:
 - noise occupancy;
 - hit and trigger efficiency;
 - Time over Threshold distributions;
 - ▶ alignment.

Stip Hit occupancy for Tkr Tower 3

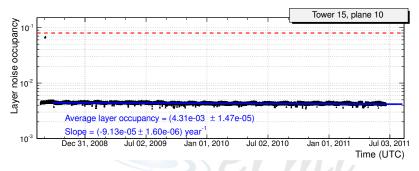


Run selection for this summary:

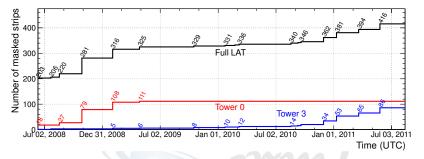

- roughly all the runs taken in the nominal data taking configuration;
- \blacktriangleright more than 1500 s long, most of them are \sim 5000 s long and contain ${\sim}2M$ events;
- not including the early phase of the Launch and Early Orbit

 \Rightarrow numerology: \approx 17000 runs, from September 2008 to June 2011.

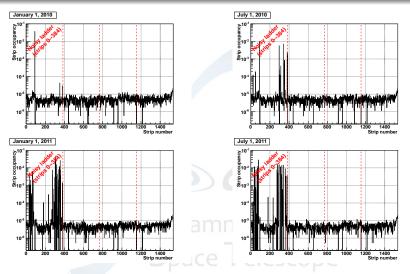
HIT EFFICIENCY



TIME OVER THRESHOLD


- Long term trending of the position of the MIP peak in the Tracker Time Over Threshold (averaged over the LAT)
- The two noticeable discontinuities are due to hardware or software changes
 - Analog signal remarkably stable (within much less than 1%) since the last two changes.

NOISE OCCUPANCY


- Long term trending of the noise occupancy for a typical silicon layer
 - Measured accumulating counts on the silicon layers far from triggering towers (and cross-checked with dedicated periodic triggers)
- Noise occupancy at the level of 4×10^{-3} for a layer (1536 strips)
 - ► Translating into 2-3 × 10⁻⁶ at the single strip level (dominated by accidental coincidences)...
 - or 2-3 noise hits per event in the full LAT

STRIP MASKS TRENDING

- ► Some 200 noisy strip masked prior to launch (0.02%)
- 213 additional noisy strips masked over the first three years of mission, for a total of 416 (0.05%)
- Two major contributors
 - Tower 0 (Flight Module A): the first one being assembled, suffering from some processing issues—showed some evolution throughout the first year
 - Tower 3 (Flight Module 15): noise issue in one ladder—more on that later

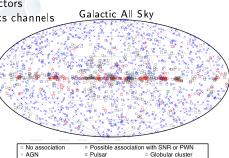
A MINOR HARDWARE ISSUE

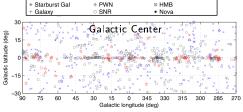
Noise in one silicon ladder steadily increasing since January 2010
 ... just one out of the 2304 silicon ladders in the LAT

A MINOR HARDWARE ISSUE To be debugged in space

- One power supply per tower
 - We only monitor the currents at the tower level (i.e. each HV line is biasing 36 × 4 = 144 silicon ladders)
 - Not trivial to measure a relative increase in the leakage current at the level of a single ladder

► Test runs with reduced bias HV (40, 60, 80 V vs. nominal 105 V)


- Normal data taking, charge injection calibration
- No obvious root cause identified
 - Even if we lose the entire ladder it's less than 0.05% of the tracker
 - No evidence of similar phenomena in any other part of the LAT


CONCLUSIONS

- The LAT tracker is the largest solid-state tracker ever built for a space application
 - ▶ 73 m² of single-sided silicon strip detectors
 - Almost 900,000 independent electronics channels
- All design goals met with large margins
 - Single-plane hit efficiency > 99%
 - Noise occupancy at the level of 10⁻⁶
 - 160 W of power consumption
- Major science results obtained during the first three years
 - ⇒ Fermi 2-year point source catalog 1873 sources, including 12 extended!

 $http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2yr_catalog$

- No noticeable degradation of the performances observed
 - ⇒ Fermi is a 5 to 10 years mission! C

Spare slides

Gamma-ray Space Telescope

MAPPING OF THE SAA

SAA mapping (TKR Low Rate Science counters)

- The South Atlantic Anomaly is a region with a high density of trapped particles (mostly low-energy protons)
- We do not take physics data in the SAA (ACD HV is lowered) but we do record the trigger rate from CAL and TKR
- The mapping of the SAA was one of the goals of the commissioning phase, now routinely monitored

TRIGGER

Hardware trigger at the single tower level

- All subsystems contribute
- TKR: three consecutive xy planes in a row hit
- CAL_LO: single CAL log with more than 100 MeV (adjustable)
- CAL_HI: single CAL log with more than 1 GeV (adjustable)
- ROI: MIP signal in one of the ACD tiles close to the triggering TKR tower
- CNO: heavy ion signal in one of the ACD tiles

► Event readout

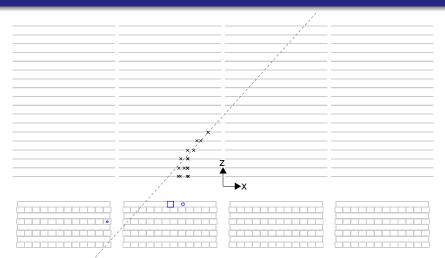
- Each particular combination of trigger primitives is mapped into a so called trigger engine (determines hardware pre-scale factors, and readout mode)
- Upon a valid L1 trigger the entire detector is read out

ONBOARD FILTER

► Filter basics

- Need software on-board filtering to fit the data volume into the allocated bandwidth
- ▶ Full instrument information available to the on-board processor
- Flexible, fully configurable (the following reflects the nominal science data taking setting)

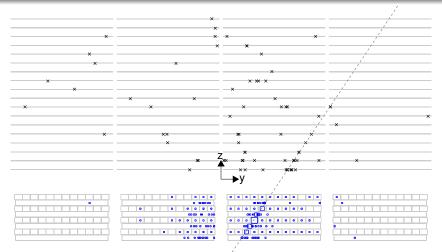
Nominal implementation


- Each event is presented to up to 4 (adjustable) different filters
- ► GAMMA: rough photon selection (main source of science data)
- HIP: heavy ions (continuously collected for calibration purposes)
- MIP: used in calibration runs
- DGN: configured to provide a pre-scaled (×250) unbiased sample of all trigger types
- Final gamma selection performed on ground (see the following)

INSTRUMENT DESIGN DRIVERS

Science design drivers

- Effective area and angular resolution: design of the tracker converter
- Energy range and resolution: thickness and design of the calorimeter
- Charged particle background rejection: mainly driving the ACD design, but also impacts the tracker and calorimeter design, along with the trigger and data flow
- Mission design drivers
 - Launcher vehicle: instrument footprint $(1.8 \times 1.8 \text{ m}^2)$
 - Mass budget (3000 kg): maximum depth of the calorimeter
 - Power budget (650 W overall): maximum number of electronics channels in the tracker—i.e. strip pitch and number of layers
 - Launch and operation in space: sustain the vibrational loads during the launch, sustain thermal gradients, operate in vacuum


TRACKER RECONSTRUCTION: LOW ENERGY SIMULATED 80 MEV GAMMA-RAY

Angular resolution dominated by multiple scattering

- Call for thin converters...
- but need material to convert the gamma-rays!

TRACKER RECONSTRUCTION: HIGH ENERGY Simulated 150 GeV gamma-ray

Angular resolution determined by hit resolution and lever arm

- Call for fine SSD pitch, but power consumption is a strong constraint
- ▶ Backsplash from the calorimeter also a potential issue