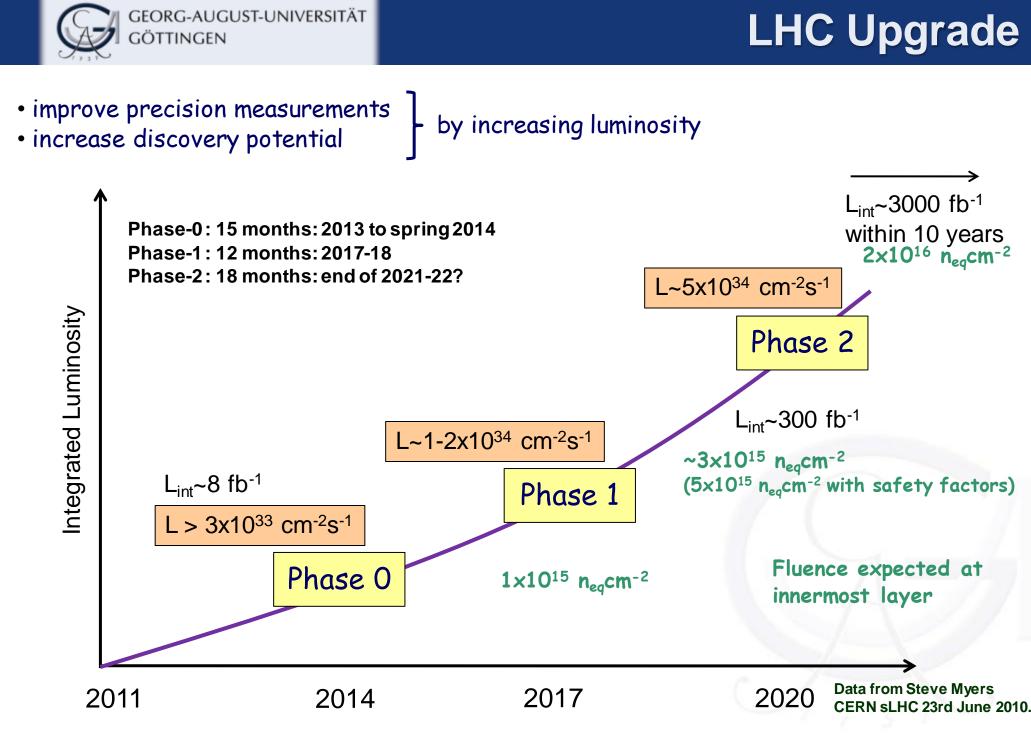


GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

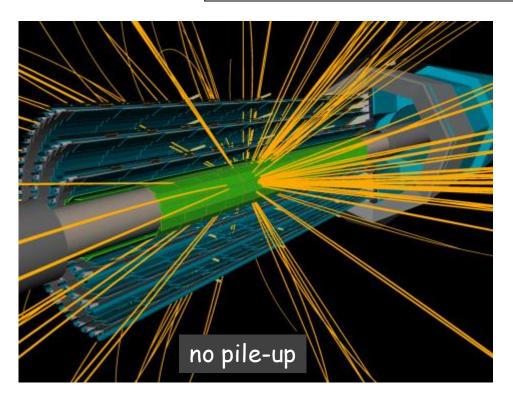

<u>ATLAS IBL sensor</u> <u>qualification</u>

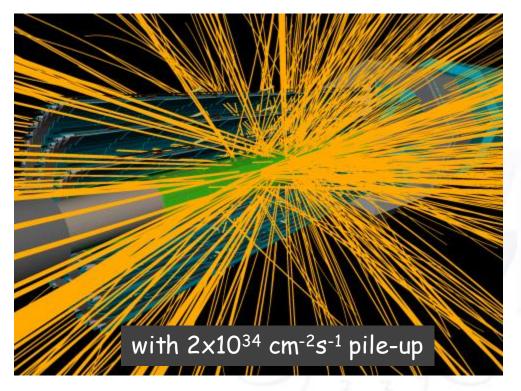
Jens Weingarten

(2nd Institute Of Physics, Georg-August-Universität Göttingen)

for the ATLAS IBL Collaboration

15/09/2011

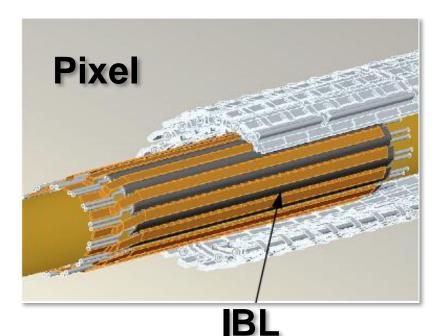

15/09/2011

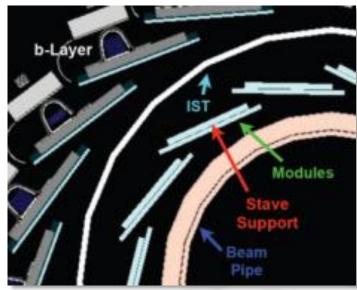


Major detector upgrades are necessary:

→ tracking robustness and vertexing suffer from high occupancy → impact on b/τ tagging, electron ID, etc.

> Simulated event containing 2 jets of 500 GeV: all tracks with pT>0.5 GeV, more than 1 Pixel + IBL cluster


The IBL Detector


Installation of a 4th pixel layer inside the current pixel detector (major Phase 0 project):

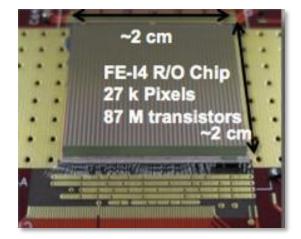
- performance of current pixel detector will degrade before main tracker upgrade (Phase 2)
- maintain physics performance in high occupancy environment (higher granularity, r/o bandwidth)
- increase radiation hardness
 (IBL fluence ~ 5x B-Layer fluence)

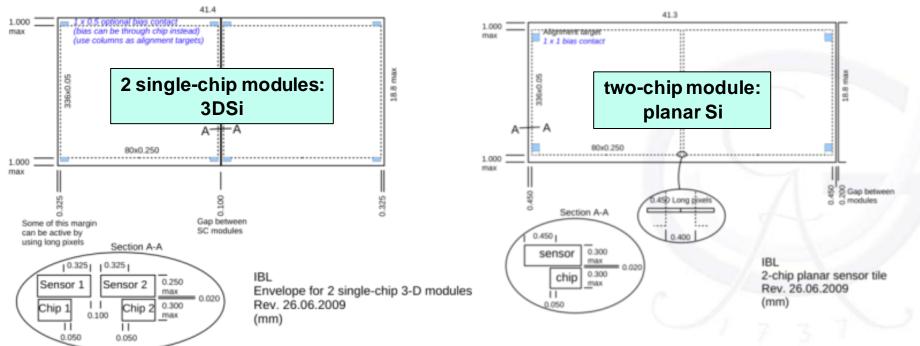
\rightarrow Insertable B-Layer

- 250 Mrad TID and $5 \times 10^{15} n_{eq} cm^{-2}$
- installation originally planned for 2015-2016... advanced (in 2011) to 2013 (Fast-track IBL)

- IBL mounted on new beam pipe
- Length: ~64cm
- Envelope: R_{in} = 31mm, R_{out}=40mm
- 14 staves, 32 pixel sensors / stave.
- Front-end chip:
 - FE-I4 (IBM 130 nm CMOS tech.)
 - 50µm x 250µm
 - 80(col) × 336 (rows) = 26880 cells.
 - 2cm x 2cm!

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

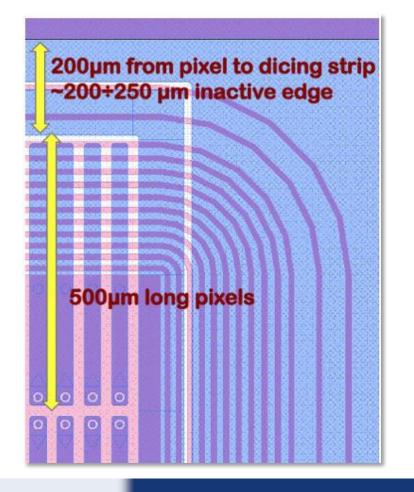

IBL module design


Two competing sensor technologies under development for IBL

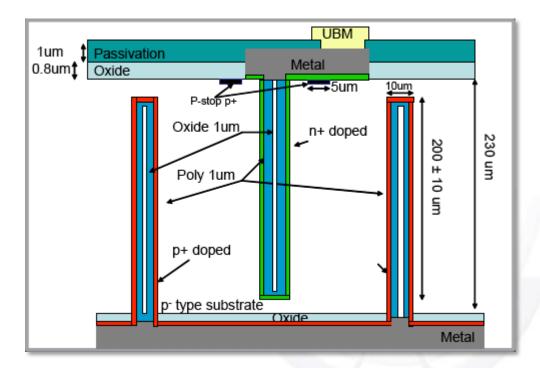
- \rightarrow 1-chip module for 3DSi sensors
- \rightarrow 2-chip module for planar Si sensors

Module engineering parameters

- max. sensor bias = 1000 V
- sensor thickness $225 \pm 25 \ \mu m$
- sensor power dissipation < 0.2 W/cm² at -15C
- sensor temperature ~ -15C after full irradiation
- inactive edge < 325 μm (single chip) or < 450 μm (two chip)


15/09/2011

Sensor technology


Planar Slim Edge Sensors (CiS)

- oxygenated n-in-n silicon; 200 µm thick
- minimize inactive edge by shifting guard-ring underneath pixels
 - \rightarrow 215 µm inactive edge achieved

3D Slim Edge Sensors (FBK and CNM)

- partial 3D: electrodes etched from both sides
- p-type substrate; 230 µm thick
- no active edge
 - \rightarrow ~200 µm inactive edge achieved

(drawing outdate: columns penetrate full sensor)

Fast Track Sensor Qualification

Task	PLANAR	3D
Ready for installation	July 4, 2013	Aug 1, 2013
Finish loading	Feb 15, 2013	Mar 15, 2013
Start stave loading	Sept 19, 2012	Oct 15, 2012
Sensor production completed	June 11, 2012	Aug 27, 2012
	6 batches x 25 wafers	10 batches x 22 wafers
Soncor production has started f	ollowina	
Sensor production has started for IBL Fast Track Qualification for the Heavy program of sensor irradia	sensor choice: review July	
IBL Fast Track Qualification for Heavy program of sensor irradia • 4 proton irradiation camp	sensor choice: review July ations and testbeams in 20 aigns at Karlsruhe (26 Me\	11: / protons)
IBL Fast Track Qualification for Heavy program of sensor irradia • 4 proton irradiation camp • 3 neutron irradiation cam	sensor choice: review July ations and testbeams in 20 aigns at Karlsruhe (26 Me\ paigns in Ljubljana (reactor	11: / protons) r neutrons)
IBL Fast Track Qualification for Heavy program of sensor irradia • 4 proton irradiation camp • 3 neutron irradiation cam • 2 beam tests (Feb. and A	sensor choice: review July ations and testbeams in 20 aigns at Karlsruhe (26 Me\ paigns in Ljubljana (reactor pril) at DESY (4 GeV posit	11: / protons) r neutrons) rons)
IBL Fast Track Qualification for Heavy program of sensor irradia • 4 proton irradiation camp • 3 neutron irradiation cam	sensor choice: review July ations and testbeams in 20 aigns at Karlsruhe (26 Me\ paigns in Ljubljana (reactor pril) at DESY (4 GeV posit RN (180 GeV pions): Irrad	11: / protons) r neutrons) rons)

For the preparation of the IBL sensor review, 77 modules had been produced:

- 40x 3D
- 37x Planar

Several irradiation campaigns have been performed

- 11x IBL 1-chip modules (3D and Planar) were irradiated to the IBL target fluence (5×10¹⁵ n_{eq}cm⁻²)
- low energy protons and reactor neutrons
- TID during proton irradiation about 3x IBL lifetime

	FE-I4 Assemblies for Sensor Review								
			Thickness	Sensor	Nu	Target Fluence			
Foundry	Technology	ology Batch ID		EdgeType	Done	p-irradiated	n-irradiated	(neq/cm2)	
			150	slim	2	1		2 x 10e15	
		<n-in-n 150=""></n-in-n>		conservative	2				
CiS	Planar n-in-n	<n-in-n 200=""></n-in-n>	200	slim	12	3	2	5 x 10e15	
CIS	Pianar n-in-n			conservative	2		1	5 x 10e15	
		<n-in-n 250=""></n-in-n>	250	slim	9	1	2	5 x 10e15	
				conservative	10		1	5 x 10e15	
CNM	3D, double side	5306	230	slim	16	1		2 x 10e15	
					10	3	2	5 x 10e15	
	3D, double side	ATLAS 07	230	slim	8				
FBK	3D, double side	ATLAS 09	230	slim	16	1		2 x 10e15	
	SD, double side					1		5 x 10e15	
Total Planar				37					
	Total 3D				40				
	Grand Total 77 19								

Green: IBL Design

Three testbeam periods until now:

- February (15d) and April (22d) at DESY \rightarrow first operation of new FE-I4A chip
- June at CFRN SPS

Final IBL-type sensors, irradiated to IBL design fluence available for SPS testbeam

- scheduled for 24 days
- North Area TAX problem
- difficult startup of SPS

CERNSPS (H8)

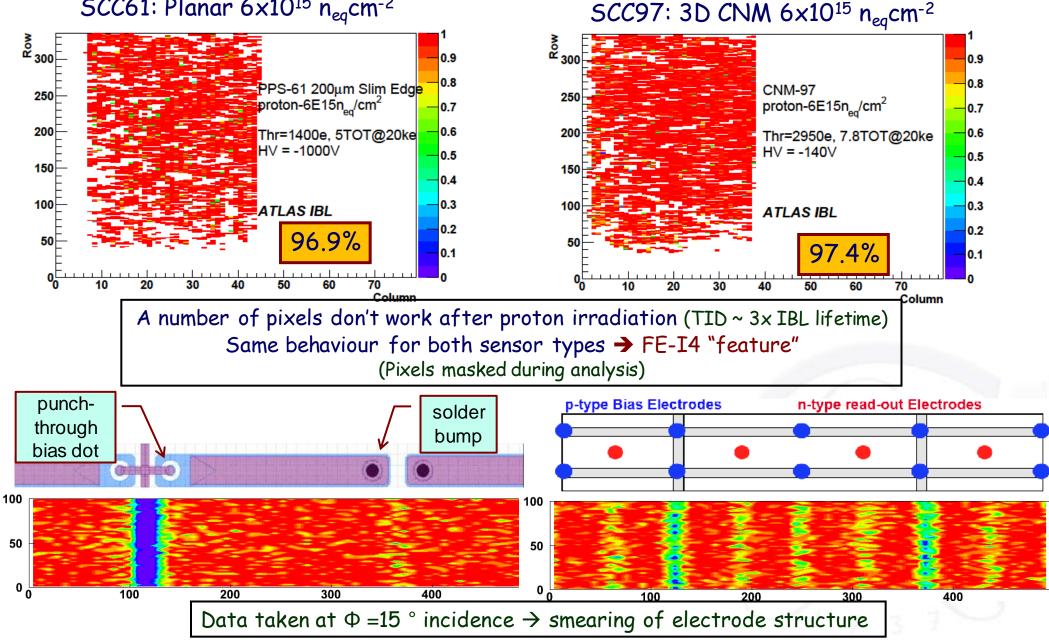
EUDET telescope inside Murpurgo magnet (1.6T)

 \rightarrow ~2.5d of beamtime delivered

Comments (21-06-11 21:26) Phone: 77500 or 70475 TROUBLE ON ALL BEAMS INVESTIGATING...

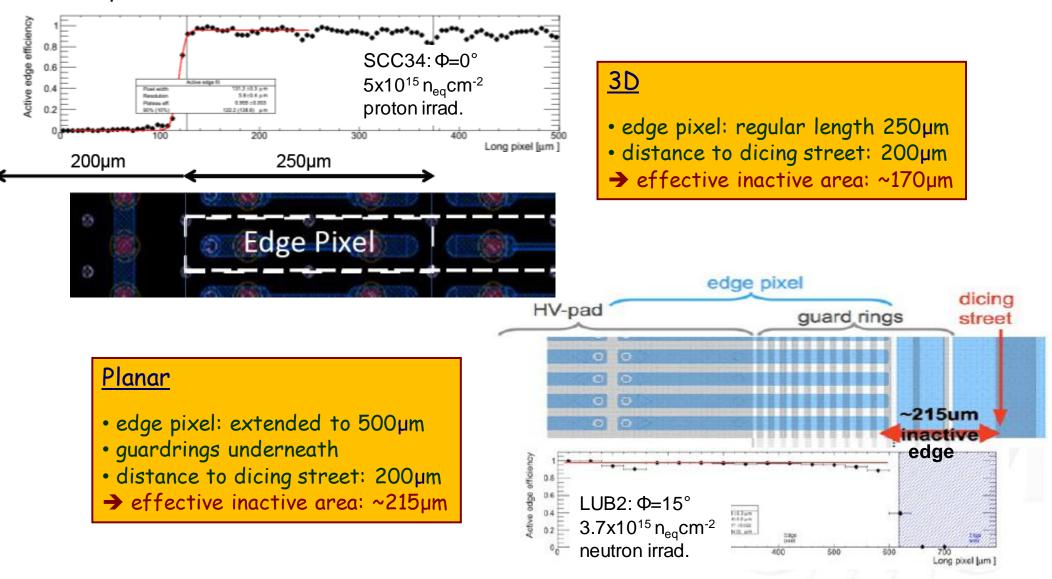
Legend Non-irradiated p-irradiated 2e15 p-irradiated 5e15 n-irradiated 5e15

0	N
	Ţ
	T
	(I)
Ш	Π
	Т
	Π
	T
\square	Π



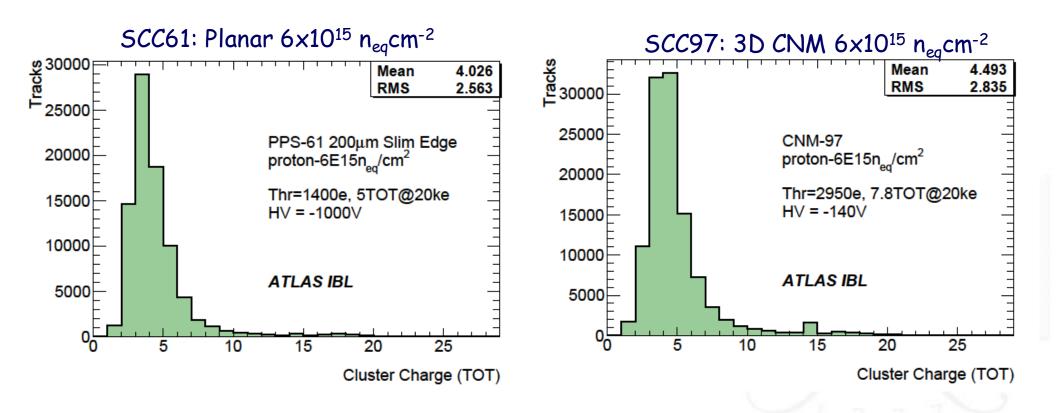
15/09/2011

Hit Efficiency


SCC61: Planar 6x10¹⁵ n_{eq}cm⁻²

Edge Efficiency

Measure efficiency on edge pixels to estimate inactive area between modules in z IBL requirement: inactive width <= 450 µm

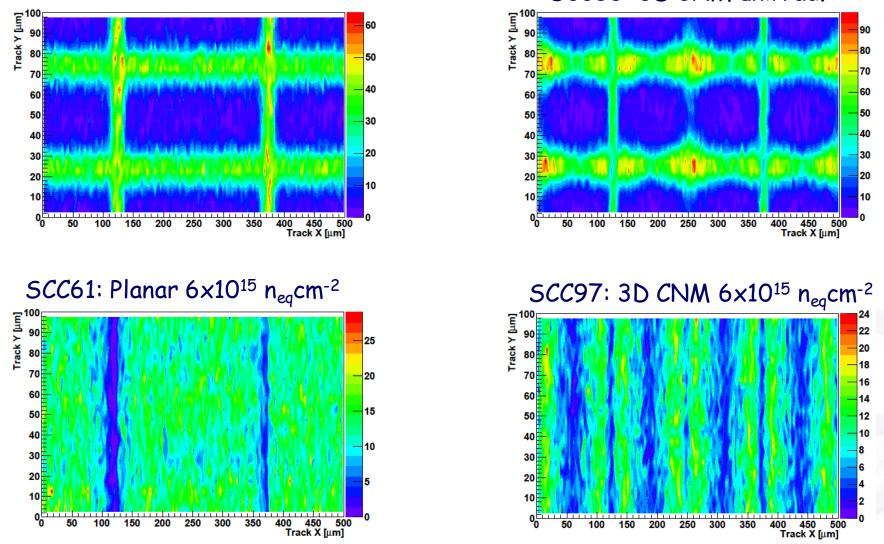


GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Charge collection

Charge measured as Time-over-Threshold (TOT)

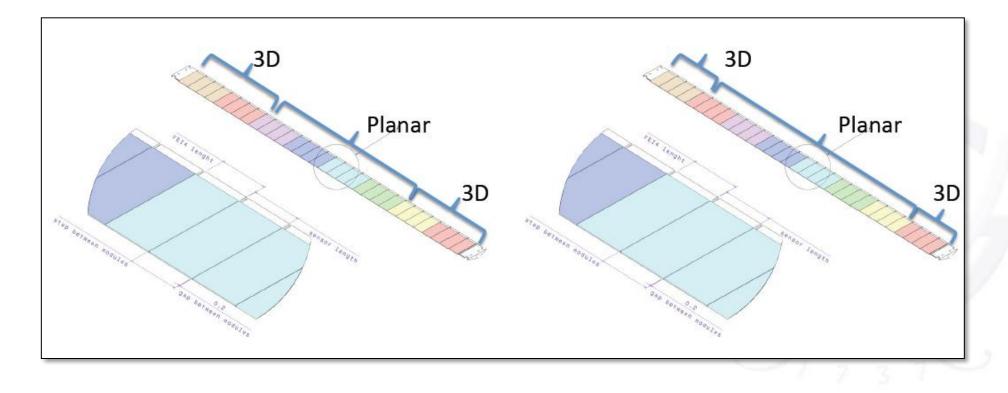
- units of 25ns
- TOT calibration not well-understood
- hard to disentangle FE and sensor effects
- shape looks reasonable
- → no reliable statement on absolute collected charge possible (yet!)



Charge sharing probability

SCC55: 3D CNM unirrad.

SCC40: Planar unirrad.


Probability for a hit to be shared with the neighbouring pixel [%]

15/09/2011

ATLAS Pixel extended Institute Board endorsed the recommendation of the review panel:

- produce enough Planar sensors to build 100% of the IBL
- continue current 3D sensor production (3 batches each from CNM and FBK)
- Baseline: 100% Planar sensors
 Option: 25% 50% 3D sensors

Backup

June TB Summary

Sample	Fluence	ID	Al Board Temp (C)	HV(V)	Ι(μΑ)	Thers hold (e)	Tilt Angle	Tracking Efficiency (%)	Charge Sharing (%)
PPS 200µm Slim Edge	n/a	40	-14	-100		2700	0	99.9/99.9	15/73.3
3D-CNM	n/a	55	-14	-20	0.7	1200	0	99.5/99.6	24/37.9
PPS 200µm Slim Edge	p-5E15	60	-14	400/60 0/800	324/29 0/555	1300	0	Data unusable (too high rate in Telescope)	
PPS 200µm Slim Edge	p-6E15	61	-36	-1000	160	1400	15	96.9	43.9
		61	-26	-800	260	1400	15	93.7	28.9
		61	-36	-600	57	1400	15	86.7	7.0
PPS 250µm Slim Edge	n-3.8E15	LUB2	-36	-1000	74	1100	15	99.0	43.5
		LUB2	-26	-800	100	1100	15	98.7	9.7
		LUB2	-36	-600	28	1100	15	97.8	14. 1
		LUB2	-26	-400	40	1100	15	95.7	12.2
3D-CNM	p-5E15	34	-14	-140	150	1300	0	96.1/97.5	9.4/9.9
3D-CNM	p-6E15	97	~-36	-140	30	2950	1 5	97.4	22.1
3D-CNM	n-5E15	82	~-36	-160	27	2700	15	89.4	11.3
3D-FBK	p-5E15	87	~-36	-140	35	2450	15	95.3	39.5
3D-FBK	p-2E15	90	~-36	-160	34	3100	15	99.8	59.9

15/09/2011