

The Adaptive Gain Integrating Pixel Detector

A 4.5 MHz camera for the European XFEL

Investigation of pixel detector designs for X-ray Photon Correlation Spectroscopy

Julian Becker

Outline

- The AGIPD
 - XFEL challenges
 - AGIPD design
- HORUS
 - What is HORUS?
 - Processing chain
- XPCS Simulations
 - What is XPCS?
 - Simulation procedure
 - Figures of merit for different layouts
- Summary and Outlook

XFEL pulse trains

Special structure of pulse trains:

- 600 μs long pulse trains at a repetition rate of 10 Hz
- Each train consists of 2700 bunches with a separation of 220 ns
- (SASE) Each bunch consists of ≈10¹² photons arriving <100 fs

Beam energy:

- 5 25 keV (depends on station)
- 12.4 keV (λ=0.1 nm) nominal design energy for AGIPD

XFEL challenges

AGIPD design

The detector layout

• Upgradable to 4 Mpix 14.09.2011

AGIPD test-chips (I)

AGIPD 0.1

- No pixels yet
- 3 readout blocks consisting of:
- → Readout chain (Preamp + CDS stage)
- → 3 different kinds of leakage current compensation

AGIPD 0.2

- 16 x 16 pixels
- 100 storage cells/pixel
- No leakage current compensation
- Different combinations of preamps and storage cell architectures

AGIPD 0.3

- 16 x 16 pixels
- 200 storage cells/pixel
- Radiation hard storage cell design
- High speed serial control logic

AGIPD test-chips (II)

AGIPD 0.1

- Linearity of the gain
- Stress-test of the input gate at the preamp
- Temporal behavior of the preamp and CDS stage

AGIPD 0.2

- Energy calibration
- Noise determination
- Pixel-to-Pixel variations
- Storage cells variations
- First imaging

AGIPD 0.3

- Radiation hardness of storage cells
- Test of the high speed serial control logic
- Test ongoing

Imaging with AGIPD 0.2

Outline (II)

- The AGIPD
 - XFEL challenges
 - AGIPD design
- HORUS
 - What is HORUS?
 - Processing chain
- XPCS Simulations
 - What is XPCS?
 - Simulation procedure
 - Figures of merit for different layouts
- Summary and Outlook

What is HORUS?

- HORUS stands for:
 Hpad Output Response fUnction Simulator
- Collection of IDL routines
- Designed to evaluate influences of certain design choices for AGIPD
- Expanded to allow simulations of High-Z sensors and photon counting detectors (Medipix3) by D. Pennicard

HORUS is a transparent detector simulation tool-kit:

- User provides an (oversampled) 'input image' containing the number of photons in each pixel
- HORUS produces an output image, i.e. the number of detected photons in each pixel
- Simulation parameters/behavior can by adjusted by the user
- Additional functionality with special options

HORUS processing chain

- Behavior of all steps can be modified
- Intermediate results can be accessed

Additionally HORUS is:

- Using Monte Carlo and analytic elements:
 - Analytic treatment of charge transport and plasma effects
- NOT simulating the surrounding material (Bumps/ASIC/Module mechanics)
- Using a simplified sensor geometry
- NOT tested with whole scale AGIPD (doesn't exist yet!), but:
 - Simulation results for Medipix3 match well
 - Test results from all AGIPD test chips are included

Outline (III)

- The AGIPD
 - XFEL challenges
 - AGIPD design
- HORUS
 - What is HORUS?
 - Processing chain
- XPCS Simulations
 - What is XPCS?
 - Simulation procedure
 - Figures of merit for different layouts
- Summary and Outlook

Scattering on many particles

14.09.2011

What is XPCS?

Real space

Log(Intensity) in detector plane

- Investigation of fluctuations in diffraction images
- e.g. molecular dynamics in soft matter
- Pump-probe XPCS
- Many more applications 14.09.2011 J. Becker, DESY, PSD9

How XPCS is performed

AGIPD

- Probe sample sequentially with non-destructive XFEL pulses
- Analyze image series using intensity autocorrelation (g₂ function)
- Functional form determined by interaction mechanism
- Extract time constant

Non-destructiveness requires large low intensity XFEL pulses -> resulting speckles will be small

Detector requirements for XPCS AGPD

- 4 µrad angular resolution
 - \rightarrow 80 μm pixel size at 20m distance
 - X AGIPD Pixel size is 200 μm
- Single photon sensitivity
 - ✓ Provided by AGIPD
- Very high frame rate
 - ✓ Single pulse imaging possible with AGIPD
- Acquisition of image sequence
 - ✓ More than 300 images stored per train

- 1. Generate and evolve real space system
- 2. Calculate complex wave form in the detector plane (Fourier transform)
- 3. Scale and quantize wave form to produce discrete photon distribution
- 4. Use the photon distribution in the detector simulation (HORUS)
- 5. Evaluate output data and derive a figure of merit

Key simulation parameters

- Linear sequence of 300 images
- 5 independent pulse trains
- Infinite coherence length (long./lat.)
- Small angle scattering approximations
- Incoherent noise of 10⁻² γ/pixel/frame
- Speckle size of \approx 150 μ m FWHM
 - \rightarrow At 20m distance: \approx 13 μ m FWHM beam

Signal to noise ratio of the g₂ function

- Analytic expression available for low intensities
- Has been successfully used for many years
- Relative error of the correlation constant
 - Relevant physical parameter
 - Essential for error determination on derived parameters like hydrodynamic functions etc.

Region of interest

Quadrant of 200 µm pixels (AGIPD, MAAT)

Quadrant of 100 µm pixels (RAMSES)

\bigcap	Region of
\bigcirc	Interest

MAAT = AGIPD + aperturing to 100 µm effective pixel size

Limited by pixel density

Small ROI

Limited by total area

Large ROI

14.09.2011

J. Becker, DESY, PSD9

2.2

values (blue arrow) $SNR \triangleq \frac{g_2 - 1}{err(g_2)}$ The relative error of the correlation constant is the error of fit result (violet arrow)

The signal to noise

ratio is derived from

the dispersion of g2

Figures of merit (II)

Signal to noise ratio

14.09.2011

0.10

26

100.00

The relative error of the correlation constant is the error of fit result (violet arrow)

The signal to noise

ratio is derived from

the dispersion of g2

values (blue arrow)

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.01

g2 value

1.00

lag time

10.00

Relative error

- No analytic expression available
- Relevant quantity for further data evaluation (diffusion constants, hydrodynamic functions, etc) 14.09.2011

- Lower values indicate better quality
- Noise level at dashed vertical line
- Error saturates around $<I> \approx 0.1$
- Lower saturation value for small pixels
- AGIPD lower than RAMSES for large

ROI and low intensity

Conclusions for XPCS

- XPCS insensitive to FEL fluctuations (not shown)
- Aperturing not beneficial at low intensities
- S/N and relative error behave differently
- Both saturate, but at different intensities
- Better performance of AGIPD at low intensities comp. to 100 µm pixel version
- Paper under review preprint: <u>http://arxiv.org/abs/1108.2980</u>

Summary

- Progress on AGIPD test chips
 - Verified basic circuit blocks
 - Verified gain switching
 - First imaging capability demonstrated
- Progress on HORUS code
 - Included Compton/Thomson scattering
 - Included fluorescence
- Published first results on XPCS
- AGIPD suitable for XPCS

Acknowledgements

AGIPD Collaboration

DESY

Julian Becker Peter Goettlicher Heinz Graafsma Helmut Hirsemann Stefanie Jack Sabine Lange Alessandro Marras Ulrich Trunk

PSI

Roberto Dinapoli Dominic Greiffenberg Beat Henrich Aldo Mozzanica Bernd Schmitt Xintian Shi

Univ. Bonn

Marcus Gronewald

Hans Krueger

Univ. Hamburg

Robert Klanner Joern Schwandt Jiaguo Zhang

HORUS was initially designed by: Guillaume Potdevin, TU Munich

We're looking for PostDocs on:

- AGIPD calibration
- Low energy Detectors

Contact Heinz.Graafsma@desy.de