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Abstract
We are developing a PET insert for existing MRI pguent to be used in clinical PET/MR studies of thenan brain. The proposed scanner is based on aatithilgamma detection with monolithic blocks ofigar-
doped lutetium yttrium orthosilicate (LYSO:Ce) coeghito magnetically-compatible APD matrices. Théatligistribution generated on the LYSO:Ce block presithe impinging position of the 511 keV photonsiiBans
of a positioning algorithm. Several positioning hmis can be implemented to extract the incidenséipo of gammas directly from the APD signals.dfiy, an optimal method based on a two-step Feeddmd Neural
Network has been selected. It allows us to reaeisa@lution at detector level of 2 mm, and acquirages of point sources with a first BrainPET protetyp
Neural networks provide a straightforward positi@nbf acquired data once they have been traineetefdre the critical work was to find a time-eféint training method without degrading the good iapa¢solution
reached. An optimization process has been cartiedhmwing that the amount of training data canelgleiced to about 5% of the initial number with ardegtion of spatial resolution of less than 10%.

The BrainPET Scanner Necessity of a Positioning Algorithm in PET Monolithic Blocks
* Cylindrical insert for MRI equipment. * Gamma incidence point + Incidence angle.ine-of-Response.
LoR
« 52 cassettes of 4 detector blocks each one, mitéridiameter of 40 cm. (& en i (n.) (. 0 ‘)
* A detector block = two LYSO:Ce trapezoidal mortutitcrystals of 10 mm * Noneed for deep-of-interaction (DOI) determination.
thickness and 18.5x 21.4/22.4 - 22.5/23.5 mm susfaeelially stacked. « The identification numbers (IDs) of the detectiviggering in
« Each block is white painted (BC-620) and opticalypled to two APDs el SO I SCh S
matrices, Hamamatsu S8850-02 (8x8 pixels per blet&ator). « Scintillator light distribution depends anand &,, e;).
 Individual front-end electronic based on the ASISTA-241, which sums the | «APDs measurements POSUONNG (o, @) . LoRs - Image: i L
APD charge along rows/columns and generates afrigg means of a CFD. Incidence angley, Igorithm ! the detector’s surface.
Positioning Algorithm Selection First Brain PET Prototype

« Simulations of perpendicular and slanted incidence of 511 keV gammas over a LYSO:Ce monolithic « Two detector blocks in coincidence and a rotagitagform placed between them.
block have been developed with GAMOS, a CIEMAT Gédrased Monte Carlo simulation software

« Studied positioning methods: Anger Logic, Least&gs (LS, CRj Generalized CH), First and Five
Nearest Neighbours (NN, 5NN), one-step and twosshégural Networks (NRland NN¢*L).

« Optimal spatial resolution (FWHM) withtavo-steps Feed Forward Neural Network, NN

 Each block was trained individually working in coincidence with a PMT:

- 300 events in known positions on a grid of 1 mesated points over the
entire block surface (525 points)

« Spatialresolution at detector level with NN®*-=2 mm FWHM.
- Improvement above 40% over the second-be ¢ ! i 4 3 $
algorithm. NN(G+L) 3

Neural Network Structure (NNS+L) NN@)

= One independent NN for each coordinage €;). SNN
INN

« Imagesof point 2Na sour cesreconstructed with SSRB + FBP.

" - Spatialresolutions with NN©*- from 2.1 to 2.5 mm FWHM.

- Resolving power with NR- = 2 mm.

* 8 inputs (APDs sums in rows or columr$, 70l — )
. . . Chi2

« 2 hidden layers of 4 sigmoidal neurons each. 94.67%
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« 1 linear outputy = e, or ey.
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« Two-steps application (Global + Local) Fig. 2. Transversal spatial resolutions for thraesversal incidence C il coordimae (nm) "
anglesay for several positioning methods. Variations witbpect to Fi a oo . T
f A q y ig. 3. Reconstructed images of tytx 1mm??Na sources Fig. 4. Intensity profiles along the radial lineth
- The first es“mated_ coordinate (QIObal) allows to omaticcencelarelcporiediasbercenianchalics placed at 5 mm separation using as positioningrihgn NN+ crosses the source centres for different posit@mnin
select a restricted interval for a second (locatywork. () very siow convergence, not repeated for slarses. (left) and 5NN (right). algorithms.

Optimization of the Training Procedure

Objective: To reducethe data acquisition and processing times without introducing a noticeable degradation of the detector performance.

Reduction of the Number of Events per Point Reduction of the number of events per point Reduction of the number of training points
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» Training can be done witthe sixth part of theinitial data with only a 3% of
degradation on resolution.
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Reduction of the Number of Training Points
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- Based on the similitude of the light distributiosfsevents with a common incide! 120 £ —

coordinate.
« Original training procedure: 23 points,(e;’) are associated to the coordinaté
« Proposed reduction: only a fraction ef,(e;’) points are used for training.

- Subsets of 4, 3 and 1 points per lirehave been tested.

- By using a32% subset of training points degradation is only 3.6% FWHM
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Fig. 6. Spatial resolution dependence on the numbieaining events per point (left) and on the emof training points (right).

Continuous Training M ethod

« Each block is trained in coincidence with the &gsettes placed in front of it (F6V 21 cm)
- 17 transversal + 4 longitudinal NNs per block.
- Displacing??Na point source placed on known positions closbécentrance block surface.
- Coincident crystal IDs + source positiengamma incident point

 Estimated time for full ring acquisition approxitely two weeks.

Fig. 5. Left: Reduction of the training points pieele;’ from 23 (a) to 4 (b). Result: A 5% of theoriginal train data set leadsto a resolution degradation lower than 10%.
Right: Sector of cassettes that generates valictitiinces with the block under training.

Conclusions

« Several algorithms have been studied in ordee#d with the positioning problem in a monolithideteor block.

« A two-steps Feed Forward Neural Network method sedscted as the best choice for our BrainPET ptrsjace it provides spatial resolutions clearlitdrethan the remaining algorithms.
 Spatial resolutions of 2 mm FWHM at detector leegld 2.5 mm in tomographic images of point souveer® obtained with a first BrainPET prototype.

< An optimization for the full ring training procetihas been carried out, reaching a trade-off lstwemporal requirements and spatial resolution.

« The full scanner training acquisition time hasrbesduced to an estimated time of about 2 weeks.
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