

Contribution ID: 37 Type: Poster

## Role of ilmenite micro-inclusion on Fe oxidation state of natural sapphires

Thursday, 25 May 2017 17:45 (15 minutes)

The blue color of the blue sapphire is caused by the Fe-Ti pairs. Recently, the oxidation states of Fe and Ti on high-quality blue sapphire were found as  ${\rm Fe}^{3+}$  and  ${\rm Ti}^{4+}$ . However, the oxidation state of Fe on natural sapphire with some inclusions was reported as mixing of  ${\rm Fe}^{2+}$  and  ${\rm Fe}^{3+}$  using the x-ray absorption near edge structure spectroscopy (XANES). Generally, there are mineral inclusions on natural sapphire related to Fe such as hematite (Fe<sub>2</sub>O<sub>3</sub>) and ilmenite (FeTiO<sub>3</sub>). In this study, we investigate the micro-inclusions on natural sapphires by the electron probe micro analyzer (EPMA). The oxidation states of Fe and Fe-O bond length were analyzed by x-ray absorption spectroscopy (XAS). The Fe K-edge EXAFS fitting results focused on the first shell of Fe atoms on high-quality natural sapphires were shown that the Fe-O bond length on  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> was fitted well with Fe-O bond length on Fe<sub>2</sub>O<sub>3</sub> presenting Fe<sup>3+</sup>. However, the Fe-O bond length on natural sapphires with ilmenite micro-inclusion was fitted with Fe-O bond length on Fe<sub>3</sub>O<sub>4</sub> showing Fe<sup>2+</sup> and Fe<sup>3+</sup>. As the result, the Fe<sup>2+</sup> on natural sapphires was caused by the ilmenite micro-inclusion.

**Primary author:** Mr MONARUMIT, Natthapong (Kasetsart University)

Co-authors: Dr SATITKUNE, Somruedee (Kasetsart University); Dr WONGKOKUA, Wiwat (Kasetsart Univer-

sity)

**Presenter:** Mr MONARUMIT, Natthapong (Kasetsart University)

Session Classification: Poster Presentation II

**Track Classification:** Material Physics and Functional Materials