Siam Physics Congress 2017

Contribution ID: 220

Type: Poster

First-principles study of native defects in ZnRh₂O₄ spinel

Thursday 25 May 2017 17:45 (15 minutes)

Transparent conducting oxides (TCOs) are widely used for many applications. Typically, most of TCOs are intrinsically n-type semiconductors and are difficult to be doped for p-type conductivity. The spinel ZnRh₂O₄ has been recognized as a potential p-type TCO. In this work, we present energetics and electronic properties of native defects including vacancy, interstitial and antisite defects in ZnRh₂O₄ by mean of first-principles calculations. Computed pinned Fermi levels are closed to the valence band edge in any possible growth conditions. It is thus difficult to grow an n-type ZnRh₂O₄, which is consistent with experimental facts. Based on our calculated formation energies, we observe that the Zn vacancy (V_{Zn}) acts as a deep acceptor and has relatively high formation energy, and thus V_{Zn} is unlikely to be responsible for the p-type conductivity. By contrast, we find that Zn substituting for Rh (Zn_{Rh}) acts as an acceptor forming a shallower transition level than that of V_{Zn} . Under O-rich/Rh-poor and Zn-rich/O-poor conditions, Zn_{Rh} is found to be the major source of unintentional p-type conductivity in ZnRh₂O₄. To enhance hole concentration, we suggest experimentalists to grow ZnRh₂O₄ under high oxygen partial pressure with low Rh concentration.

Primary author: Ms SIMALAOTAO, Kodchakorn (Kasetsart University)

Co-authors: Dr BOONCHUN, Adisak (Kasetsart University); Dr REUNCHAN, Pakpoom (Kasetsart University); Dr UMEZAWA, Naoto (National Institute for Materials Science (NIMS))

Presenter: Ms SIMALAOTAO, Kodchakorn (Kasetsart University)

Session Classification: Poster Presentation II

Track Classification: Condensed Matter Physics