

Contribution ID: 303 Type: Poster

Electrical Properties of Ultra-thin TiO₂ Compact Layer on FTO for Perovskite Solar cells

Wednesday, 24 May 2017 15:45 (15 minutes)

A TiO_2 compact layer or blocking layer plays a crucial role in a hybrid organic-inorganic lead halide perovskite solar cells because it can prevent the carrier recombination at the interface of fluorine-doped tin oxide (FTO) and perovskite layers. There are many methods to fabricate this layer such as spray pyrolysis or spin-coating which is solution-based synthesis that is difficult to avoid pinholes in the surface of the blocking layer. In this work, TiO_2 blocking layers are fabricated by radio-frequency (RF) magnetron sputtering using Ti metallic target with O_2 partial pressure in Ar atmosphere on FTO coated glasses. The controlled parameters for the deposition of TiO_2 compact layer are RF power, O_2 partial pressure, deposition time and annealing time. The optimization of the TiO_2 compact layers are found from the diode I-V characteristics between the TiO_2 /FTO interfaces. The FESEM images as well as optical spectroscopy are used to observe the physical appearance and the optical transmission, respectively.

Primary author: Ms SONGTANASIT, Ramon (Department of Physics, Faculty of Science, Chulalongkorn University)

Co-authors: Prof. TAYCHATANAPAT, Thiti (Department of Physics, Faculty of Science, Chulalongkorn University); Prof. CHATRAPHORN, Sojiphong (Department of Physics, Faculty of Science, Chulalongkorn University)

Presenter: Ms SONGTANASIT, Ramon (Department of Physics, Faculty of Science, Chulalongkorn Univer-

Session Classification: Poster Presentation I

Track Classification: Surface, Interface and Thin Film