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Abstract. Aurora phenomenon is an effect of collision between precipitating particles with
gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The
particles’ precipitation occurs normally around polar regions. However, some auroral particles
can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s
aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence
of the aurora as well. This work studies time variations of oxygen emission lines and solar
wind parameters, simultaneously. The emission’s spectral lines were observed by Medium
Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai
National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines
were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing
program. The correlations between oxygen emission lines and solar wind dynamics will be
analyzed. This result could be an evidence of the aurora in low latitude region.

1. Introduction

Earth’s aurora, which associates with the Earth’s geomagnetic activities, is a consequence of
interaction between auroral particles, which are solar wind particles gyrating along the Earth’s
magnetic field lines, and atmospheric ions or neutrals in Earth’s ionosphere. Solar wind, a major
influence of Earth’s aurora, is a high speed plasma carrying solar magnetic field far from solar
atmosphere and permeating into interplanetary space. The solar magnetic field that spreads
into interplanetary space is called Interplanetary Magnetic Field (IMF). The solar wind has
regularly supersonic speed and contains low-density plasma. However, solar wind properties can
vary depending on solar magnetic activities [1]. When the solar wind and the IMF reach the
Earth’s magnetic field, the Earth’s magnetic field configuration appears to be compressed at day
side, which is called dayside magnetosphere, and to be extended at night side, which is called
magnetotail. In the case that the southward IMF and Earth’s magnetic field are in opposite
direction, they will merge toward each other. This process is called magnetic reconnection.
Later, the open magnetic field lines sweep to the night side and reconnect to Earth’s magnetic
field once again at the magnetotail [2]. After reconnection process, the plasmas from day
and night sides will then precipitate into the Earth’s ionosphere. These plasmas collide with



ionospheric ions and neutrals and excite their bounded electrons. As the results, the excited
electrons decrease their energy by going back to lower states and release photons in various
frequencies creating the aurora at high latitude regions as an oval shape around Earth’s magnetic
poles. The aurora has spectral range of frequency in different colors relying on heights, and type
of ionospheric atoms or molecules e.g. nitrogen and oxygen [3]. Generally, Earth’s aurora is
frequently seen at nighttime in bright green color from oxygen (OI) 5577 A emissions at 100-150
km altitude. On the other hand, daytime aurora in red color at higher altitude than 150 km
is originated from oxygen (OI) 6300 A and 6363 A emissions that can be seen at nighttime as
well but with faint emissions [4]. In this work, the observations were operated during nighttime.
Therefore, the nighttime aurora is our target.

Spectroscopy, one of the great observational technique, is applied to study a spectrum of the
atmosphere from celestial objects including Earth’s atmospheric emission lines [5,6]. For this
case, the oxygen (OI) emission lines could be a trace of the Earth’s aurora. We propose that
the variation intensity from oxygen emission lines at polar region can be measured from every
region including low latitude regions. Moreover, it is believed that from the results of solar wind
dynamics, if the nightside particles are highly energetic, they could probably reach to lower
latitude region.

2. Observations and data analysis

For ground-based observations, a 2.4 meters diameter telescope with Medium Resolution Echelle
Spectrograph (MRES) at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand,
was used to observe spectroscopic data, i.e. flat, bias, Thorium—Argon (Th—Ar) calibration
spectrum, 5 frames dark sky for each night, and referent stars during 18:00—22:00 UT on 5—6
February 2017 (01:00—05:00 LT on 6—7 February 2017). Spectra of oxygen emission lines are
studied via the spectrum of the dark sky, in order to search for the trace of auroral lines. A data
reduction technique and peak intensity identification are discussed in the following sessions.

2.1. Data reduction

For spectroscopic data analysis, there were 3 programs including: 1) Total Commander program,
2) Dech95 — 2D image processing program, and 3) Dech—Fits — spectra processing program.
All dark sky frames had to be cleaned from noise signals by data reduction to be ready for
analysis. The clearest frame was used for extraction, a production of spectrum lines of a referent
star, which was a B—type star. For extraction, Dech95 — 2D image processing program was
used for creating a mask. The mask had to be ensured that it can fit every order of spectral
image. Accordingly, the mask was used to extract every spectral image. After acquiring spectral
lines, master flat frame, which had unsaturated intensity, was normalized before divided by
using Dech—Fits — spectra processing program. The last part of data reduction is wavelength
calibration, to convert position of pixel to wavelength. The spectrum of Th—Ar lamp, a
calibrated light, was used to identify the exact wavelengths from database, and was finally
applied to line profile of dark sky frames.

2.2. Spectral line intensity

The emission lines of specific element or compound can be identified by comparing the
wavelengths from database. The absorption line database is mostly from the sun’s atmosphere,
while the emission line database is from Earth’s atmosphere. Consequently, peak intensity of
the oxygen emission lines can be determined in unit of Analog to Digital Unit (ADU) counts [5].

2.8. Solar wind data
The hourly-averaged solar wind data were obtained from the Low Resolution OMNI
(Operating Missions as Nodes on the Internet) or LRO data set at OMNI website



(http://omniweb.gsfc.nasa.gov/). Solar wind and IMF data were observed by WIND
spacecraft. WIND spacecraft which orbits around L1 point (~1.45 km from Earth aligning
to sun) can detect the data around 1 hour depending on solar wind speed before reaching to
Earth. Consequently, the auroral spectrum should correspond to the solar wind observation
detected by WIND spacecraft approximately 1 hour earlier. The solar wind parameters that are
chosen to compare with peak intensity of the oxygen emission lines are interplanetary magnetic
field magnitude (|Brasr|) including IMF in RTN coordinate (Bgr, Br, and By), solar wind
ion density (p), solar wind plasma flow pressure (P), solar wind plasma flow speed (v), and
Kp-index, which ranges from 0-9 for the aurora to be visible [7].

2.4. Correlations between space-based and ground-based data

Refer to aurora forecast from National Oceanic and Atmospheric Administration (NOAA)
(http://www.swpc.noaa.gov/products/aurora-30-minute-forecast), solar wind data were
used to predict the aurora because of connection between the solar wind and auroral
characteristics. According to possibility of aurora occurring in low latitude regions, if there
are highly energetic solar wind particles, we thus notice the correlations between solar wind
parameters and intensity of oxygen emissions. The methods for calculating correlations in
this study are linear Pearson correlation and Spearman correlation [8]. The linear Pearson
correlation coefficient, rp, shows linear relationship of two variables (x and y). The correlation
can be calculated by the equation (1):

where N = number of all values, and Z and § = averaged values of x; and y;, respectively.

For the Spearman or rank correlation method, the ranks of two variables instead of ordinary
values are used to determine the monotonic relationship. The Spearman correlation coefficient,
ps, can be calculated by the equation (2):
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where n = number of all ranks, and d; = difference between rank of x; and y;.

3. Results and discussions

There are 5 points of oxygen’s emission intensity in each day (the x axis of plots in Figure
1.). The correlation coefficient between oxygen’s emission intensity and each parameter of solar
wind data, which were measured ~30 to ~50 minutes earlier depending on solar wind speed,
was calculated (Table 1.). On 5 February 2017, the solar wind data and oxygen emission line
intensity are negatively correlated excepting By and |Brarr| which are positively correlated.
For the second day of our observation, the results show negative correlations as well, excepting
By, p and P which are uncorrelated (Figure 1.).

4. Conclusions

The correlations between the solar wind, based on space-based observation, and low latitude
emission of oxygen lines, based on ground-based observation, tends to be negative. The
results suggest that the intensity of oxygen emissions might vary with solar wind in opposite



Table 1. Correlation coefficients between the solar wind dynamic parameters and the intensity

of oxygen emissions.

Solar wind dynamic parameters

Date Correlation
coefficients Bgr (nT) By (nT) By (0T) |Biur| (nT) v (km/s) p (N/em?®) P (nPa)
5 Feb 2017 Pearson -0.617 -0.543 0.352 0.707 -0.837 -0.504 -0.650
Spearman  -0.700 -0.100 0.100 0.667 -0.700 -0.300 -0.300
6 Feb 2017 Pearson -0.689 -0.737 -0.224 -0.410 -0.638 -0.088 -0.169
Spearman  -0.800 -0.821 0.000 -0.447 -0.600 0.000 0.000
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Figure 1. shows the solar wind dynamic parameters (Bgr, Br, By, |Brumrl|, v, p, and P) as a
function of the intensity of oxygen emissions (/) on 6 February 2017.

direction. Oxygen emissions could be originated from the aurora under the influence of solar
wind. However, there are chances that oxygen in atmosphere could collide with energetic
particles from other sources outside the solar system, i.e. galactic cosmic rays. In addition,
any other conditions are needed to be considered, for example, the corresponding times between
space-based and ground-based observations. The other sources of oxygen emissions, and other
processes that drive the auroral particles before reaching low latitude regions should be taken
into consideration as well. In addition, detail study about the connection between solar wind
activity and substorm event, including with the variability of oxygen emissions in low latitude
region should be considered for future work.
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