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Abstract. NMDC-Palatini cosmology in slow-roll regime is of our interests. We present flat
FLRW cosmological NMDC-Palatini field equations and acceleration condition. Late time
trajectory is approximated. Chaotic inflation potential is considered here as it is viable in
a range of negative coupling constant as constrained by CMB results. Phase portraits show
that the NMDC-Palatini gives new saddle-point solutions. The NMDC-Palatini effect decreases
the acceleration-allowed region and forbid acceleration at small-field values.

1. Introduction
Contemporary cosmology focuses on the either early-universe inflationary [1] or present
acceleration expansion hypothesized as effects of dynamical scalar fields such as inflaton or
quintessence [2], k-essence [3] or by effect of gravitational modifications such as braneworlds,
f(R), scalar-tensor theories as described in [4, 5] and references therein. On the observation
side, the present acceleration and inflation have been convinced by results from SN Ia [6, 7],
large-scale structure surveys [8], cosmic microwave background (CMB) anisotropies [9] and X-ray
luminosity from galaxy clusters [10]. The prediction suggests that the viable dark energy models
for present acceleration should not give too different results from that of the ΛCDM model while,
for the inflation, the model should pass Planck 2015 CMB anisotropies constraint [11], e.g. giving
tensor-to-scalar ratio not exceeding the upper bound of r < 0.12 and having spectrum index,
ns ≃ 0.968 ± 0.006. One way to result in acceleration phase is to have a coupling between the
scalar field to gravity sector such as f(ϕ, ϕ,µ, ϕ,µν , . . .) which is motivated in scalar QED, theories
with density dependent Newton’s constant [12] or with non-minimal coupling (NMC) terms like
Rϕ,µϕ

,µ and Rµνϕ
,µϕ,ν [13] obtained as lower energy limits of extra-dimensional theories or Weyl

anomaly of N = 4 conformal supergravity [14, 15]. It is also possible, without loss of generality,
to have coupling term between derivative of the scalar field and gravity, dubbed non-minimal
derivative coupling (NMDC), in form of κ1Rϕ,µϕ

,µ and κ2R
µνϕ,µϕ,ν which as well results in

acceleration [16, 17]. Relating the two couplings as κ ≡ κ2 = −2κ1, combination of the two terms
gives the Einstein tensor. Hence this is a theory with Gµνϕ

,µϕ,ν [18, 19, 20, 21, 22, 23, 24, 25].
The NMC and NMDC are found to be a spacial case of Horndeski’s theory which is generalization
of gravitational theory with at most second-order derivatives in the equations of motion, making
the Horndeski action the most general scalar-tensor theory [26]. Considering the NMDC theory
proposed by [18], the metric gµν is considered as a dynamical field. This approach is the metric



formalism. When the metric field and the connection field both take the role of independent
dynamical fields, the approach is of the Palatini formalism [27, 28, 29]. The two formalisms
result in equivalent field equation for the GR case. However, for modified gravity, the field
equations alter from each other. The NMDC-Palatini action is expressed as

S̃ =
M2

Pc
4

2

∫
d4x

√
−g

[
R̃−

(
εgµν + κG̃µν

)
ϕ,µϕ,ν − 2V

]
, (1)

of which R̃ = R̃(Γ), G̃µν(Γ) and V = V (ϕ). The symbol ε = ±1 denotes canonical and phantom
fields respectively, M2

P ≡ (8πG)−1 and c = 1. The matter field term Sm(gµν ,Ψ) could be added

as well. The Palatini Einstein tensor is G̃µν(Γ) = R̃µν(Γ)− (1/2)gµνR̃(Γ), with details referred
to [30]. In cosmological scenario, the NMDC-Palatini effect, playing a role of dark energy,
phantom crossing with oscillating EoS is possible [31]. Considering NMDC-Palatini effect, as
role of inflaton in the chaotic inflationary model, the tensor-to-scalar ratio and spectral index
could pass the Planck 2015 constraint for κ < 0 [30].

2. NMDC-Palatini cosmology in slow-roll regime
The NMDC-Palatini field equations in slowly-rolling scalar field regime are [30]

H2 ≃ ρtot
3M2

P

[
1 +

3

2

κϕ̇2

M2
P

(1 + weff)

]
and

ä

a
≃ − ρtot

6M2
P

[
1 +

7

2

κϕ̇2

M2
P

+ 3weff

(
1 +

3

2

κϕ̇2

M2
P

)]
, (2)

with the acceleration condition, weff < −(1/3)
(
1 + 2κϕ̇2/M2

P

)
. Considering only the scalar field

as a single species in inflationary epoch, ρtot = ρϕ = εϕ̇2/2 + V , Ptot = Pϕ = εϕ̇2/2 − V and
weff = Ptot/ρtot = Pϕ/ρϕ. Hence

H2 ≃ 1

3M2
P

[
1

2
εϕ̇2 + V (ϕ) +

3

2
ε
κϕ̇4

M2
P

]
, (3)

and

Ḣ ≃ 1

6HM2
P

(
εϕ̇ϕ̈+ V ′ϕ̇+ 6ε

κϕ̇3

M2
P

ϕ̈

)
or Ḣ ≃ − εϕ̇2

2M2
P

+
3κεϕ̈ϕ̇3

4HM4
P

− 3κεϕ̇4

4M4
P

− κϕ̇3V ′

4HM4
P

. (4)

The acceleration is found from the Eqs. (3) and (4),

ä

a
= Ḣ +H2 ≃ − εϕ̇2

3M2
P

(
1 +

3

4

κϕ̇2

M2
P

)
+

V

3M2
P

+
κϕ̇3

4HM4
P

(
3εϕ̈− V ′

)
. (5)

The Klein-Gordon equation for slowly-rolling NMDC-Palatini scalar field was derived in [30].
During inflationary epoch, |Ḧ/H| ≪ |Ḣ| ≪ |H2|, |4Ḣκ| ≪ 1, |9κḢ/2| ≪ 1, and
|6κϕ̇2/(5M2

P) ≪ 1| so that the equation of motion is hence,

ϕ̈ ≃ −V ′ − 3Hϕ̇ε

ε− (15/2)κH2
. (6)



2.1. Acceleration condition
Using (6) in (5), ä/a ≃ (GR part)−[

√
3κV ′ϕ̇3/(4

√
VM3

P)]
{
[4ε− (5/2)κV/M2

P]/[ε− (5/2)κV/M2
P]
}
,

where GR part is
(
−εϕ̇2 + V

)
/(3M2

P). The ϕ̇4 terms in Eq. (5) and in other equations are

negligible. Slow-roll Friedmann equation, H2 ≈ V/(3M2
P) is used here. For |κ| ≪ |M2

P/V |,
binomial approximation is valid. Considering chaotic inflation potential V = V0ϕ

n, this range
is |κ| ≪ |M2

Pϕ
−n/V0|. For n = 2, it suggests that the range should be of sub-Planckian regime.

This agrees with the result in [30] that, for κ < 0, the slowly-rolling scalar field under V = V0ϕ
n

is able to avoid super-Planckian regime. Applying binomial approximation and realizing that
the term κ2V 2/M4

P ≪ 1, the acceleration condition reads,

ä

a
≃ 1

3M2
P

(
−εϕ̇2 + V

)
−

√
3κV ′ϕ̇3√
VM3

P

(
1 +

15ε

8

κV

M2
P

)
> 0. (7)

This corresponds to εϕ̇2 < V
{
1− 3

√
3[κϕ̇3/(

√
VM2

P)]
√
2ϵv,gr

[
1 + 15εκV /(8M2

P)
]}
, where

ϵv,gr ≡ (M2
P/2)(V

′/V )2 is a slow-roll parameter. The Eq. (6) is approximated to ϕ̇ ≈ −V ′/(3Hε)

and H ≈
√
V /(

√
3MP) such that ϕ̇ ≈ −MPV

′/(
√
3ε
√
V ), therefore

εϕ̇2 < V

[
1 +

κV ′

εMP

√
2ϵv,gr

3
(
1 +

15ε

8

κV

M2
P

)]
. (8)

Negative κ makes it harder to satisfy the acceleration condition than that of GR case.
Considering chaotic inflation potential, V = V0ϕ

2 with V0 = λ(M2
P) = (1/2)m2, the acceleration

condition is εϕ̇2 < V0ϕ
2
[
1 + 16κV0M

2
P/(εϕ

2) + 30κ2V 2
0

]
. In the low field (sub-Planckian)

region, the second term (with κ < 0) could be large and could help reducing the right hand
size to less magnitude. The third term contributes to opposite effect, albeit small amount. It is
worth mention the acceleration condition of the NMDC cosmology in metric formalism [18], that
is ϕ̇2 < V0ϕ

2
{
1− 4κV0/[MP(ε− κV0ϕ

2/MP)]
}
/(ε− 3κV0ϕ

2/MP). These regions are shown in
Fig. 1.

2.2. CMB constraint on κ in chaotic inflation
As in [30], with ϕ̇ ≈ −MPV

′/(
√
3ε
√
V ), the range of the coupling κ satisfying CMB anisotropies

constraint: ns ≃ 0.968±0.006 (Planck 2015 [11]), for V = V0ϕ
2 and ε = +1 case, is re-expressed

as, −0.149/m2 < κ < −0.083/m2 . Coupling is negative and small. Chaotic inflation is viable
in this range.

2.3. Late time trajectory
Let ϕ̈ ≈ 0 and κϕ̇2/M2

P ≪ 1 at late time, ϕ̇ ≃ −V ′/[3H(ε− 4Ḣκ)]. From Eqs. (3)

and (4) we approximate that Ḣ ≃ −εϕ̇2/(2M2
P) and H ≈

√
V/(3M2

P)[1 + εϕ̇2/(4V )] hence,

ϕ̇ ≃ −V ′MP/
{
ε
√
3V

[
1 + (2κϕ̇2/M2

P) + εϕ̇2/(4V )
]}

. For V = V0ϕ
2 potential, the late time

trajectory is described by ϕ̇ ≃ −2
√
V0MP/

{
ε
√
3[1 + 2κϕ̇2/M2

P + εϕ̇2/(4V0ϕ
2)]
}
, as in Fig. 1.

3. Autonomous system
A three-dimensional closed autonomous system from Eqs. (4) and (6) is formulated:

ϕ̇ = ψ , ψ̇ ≃ −V ′(ϕ)− 3Hψε

ε− (15/2)κH2
, Ḣ =

1

6HM2
P

(
εψψ̇ + V ′(ϕ)ψ + 6ε

κψ3ψ̇

M2
P

)
. (9)

We have phase portrait and acceleration condition in Fig. 1 with shadow-labeled region where
acceleration is allowed. NMDC-Palatini effect gives new saddle solutions and forbids acceleration
in small field range. The GR and NMDC-metric formalism cases are also compared.



Figure 1. Phase portrait for an NMDC scalar field under V = V0ϕ
2 for MP = 1.0 and m = 0.8:

(a) GR (b) NMDC-metric formalism (κ = −0.3) and (c) NMDC-Palatini formalism (κ = −0.3)

4. Conclusion
Field equations, acceleration condition and late-time trajectory of slow-roll scalar field NMDC-
Palatini inflation are derived. For a viable chaotic inflation, we give coupling range. GR, NMDC-
metric and NMDC-Palatini cases phase portraits are compared. NMDC-Palatini effect gives
new saddle solutions and non-acceleration region at small field. Stability analysis is awaiting for
future works. Acknowledgements: Naresuan University Research Grant-R2557C120.
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