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Abstract. Spiral waves are often found in excitable media. In the hearts, they are 
abnormal forms of action potential propagation. Under an external forcing, the spiral 
waves drift and are subsequently terminated at the boundary. Spiral waves can be 
studied in simulations using a discrete reaction-diffusion system; thereby the time step 
must not exceed a numerical stability limit (ts). In this article, we present the dynamics 
of spiral waves in a simulated system under an external forcing as a modified 
sinusoidal function of time. The spiral waves are forced to drift along a straight line 
with a velocity and an angle depending on the time step. An optimization study 
provides the optimal time step of 0.2ts, where further reductions of the time step do not 
alter the drifting of the spiral waves. 

 

1.  Introduction 
Spiral waves are often found in excitable media, e.g., cell aggregation in slime mold colonies [1], 
during CO-oxidation on a platinum surface [2], electrical wave propagation in cardiac tissues [3], and 
the Belousov-Zabotinsky (BZ) reaction [4]. Action potential propagation in forms of spiral waves in 
heart tissues related to some cardiac arrhythmias and can lead to sudden cardiac death. Under an 
external forcing, the spiral waves drift and are subsequently terminated at the boundary of the 
medium. Drifting of spiral waves can be induced by an applied electric field and the drifting velocity 
and angle of the spiral waves increase with the field strength [5]. Under a sufficient strong field, the 
spiral waves are forced to hit the boundary and eventually annihilated [6].  

Dynamics of spiral waves and the effect of forcing in excitable media are often studied in a discrete 
reaction-diffusion system [7,8]. To avoid errors from calculations, the time step used in the 
simulations must not exceed a numerical stability limit (ts) [9]. In this article, we present the effect of 
the time step on the dynamics of spiral waves in a simulated system.  



 
 
 
 
 
 

2.  Methods 
In our numerical simulations, we use the two-variable Oregonator model [7] to describe the dynamics 
of the activator u and inhibitor v in excitable media. The advection terms for both u and v account for 
electric field for sinusoidal function E applied in x-direction. 
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As in References [8], the parameters are chosen as ε = 0.01, q = 0.002,  f = 1.4, the diffusion 
coefficients  Du = 1.0 and  Dv = 0.6, and the ionic mobilities Mu = -1.0 and Mv = 2.0. In the absence of 
an electric field, the tip of a free spiral wave rotates around a circular core (diameter = 0.9 s.u.). 

The simulations are performed using the explicit Euler method with 9-point approximation of the 
two-dimensional Laplacian operator and a centered-space approximation of the gradient term. We use 
the uniform grid space x = y = 0.1 system unit (s.u.). The time step t is varied between 0.01 - 0.9 
ts, where the numerical stability limit ts = (3/8) (x) 2 [9]. The dimensionless size of the system is 40 x 
40  s.u. (400 x 400 grid points). To create a spiral wave, a planer wave is triggered by setting 5-grid-
point strip at an edge of the medium to an excited state. The wave front is allowed to propagate into 
the middle of the medium, before half of the medium is reset to an excitable state. Then we apply the 
forcing E as a sinusoidal function of time t 
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where the amplitude E0 and the period (T) are kept constant at 0.4, 0.3 t.u. We observe the dynamics of 
the spiral wave both with and without the applied forcing and search for the optimal time step i.e., the 
largest time step that further reduction of the time step does not change the spiral wave dynamics. 

3.  Results  
In the absence of the applied forcing, the free spiral wave, as shown in figure 1a, rotates around a 
small circular circle. When the time step t is decreased, the wavelength is approximately constant 
while the wave period Tw are increased [figure 1 (b)] but the wave velocity vw decreased as shown in 
figures 1(b) and 1(c). The results imply that the optimal time step is t = 0.4 ts since the smaller time 
steps give very similar results.  

The motion of a spiral wave under an applied sinusoidal forcing with the time step t = 0.8 ts is 
shown in figure 2. The forcing causes the spiral wave whose tip is at the middle of the system [figure 
2(a)], to drift along a straight path to the left with an angle with respect to the forcing direction 
pointing to the right [figures 2(a)-2(d)]. It is subsequently terminated at the boundary of the medium 
[figure 2(e)].  

Figure 3 illustrates the detailed analysis of all simulations with an applied sinusoidal forcing. A 
graph of modified sinusoidal forcing (see equation 2) plotted against time is shown in figure 3(a). 
Even though the spiral wave drift linearly under the applied forcing, the drifting velocity and angle 
depend on the time step as shown in figures 3(b) and 3(c). When the time step t is decreased until  
t = 0.2 ts, both the drifting velocity and angle increase. However, reductions to smaller time steps do 
not change the drifting velocity and angle. Thus, the optimal time step of t = 0.2 ts for the simulations 
with sinusoidal forcing.  
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Figure 1. Dynamics of a spiral wave in the absence of applied forcing. (a) The free spiral wave rotates 
around a small circle (the filled circle) with (b) wave period Tw and (c) wave velocity vw as a function 
of the time step t. 
 

 
 

Figure 2. Sequential images of a spiral wave under a sinusoidal forcing. The spiral tip (a) initially 
located at the middle of the system (b-d) is gradually drifts to the left with an angle (e) until hits the 
boundary where the spiral wave is eliminated. The blue line indicates the drifting trajectory of the 
spiral tip. When the tip is located near the boundary, it drifts approximately with an angle θdrift to the 
direction of forcing.  
 

 
Figure 3. Effect of time step on the spiral wave under a sinusoidal forcing. (a) The sinusoidal forcing 
E vs time t. The spiral tip drifts with (b) velocity vdrift and (c) angle θdrift depending of the time step t.  

4.  Discussion and Conclusion 
We have presented an investigation on the effect of the time step on the dynamics of spiral waves at 
different time step in a simulated system. Both the motion of free spiral waves (in the absence of 
forcing) and the drifting of spiral waves under an applied sinusoidal forcing depend on the time step. 
The optimal time step in the case of time varying forcing (0.2ts) which is smaller than that for the 
simulations of free spiral waves (0.4ts). This comes from the fact that the applied time-dependent 
forcing is discretized and becomes a step-wise function which depends on the time step. Therefore, 
simulations of spiral waves under an applied forcing as a function of time should be performed with a 
fine time step to obtain promising results for comparison and confirmation of experimental results.  

It has been shown that the lifetime of tachycardia is extended by pinning of spiral waves to 
anatomical obstacles like veins and scars [3] and the elimination of such pinned spiral waves become a 
tough task especially for large obstacles [10]. Even though we show that the sinusoidal forcing induce 
a linear drift of spiral waves very similar to the case of constant forcing, it is interesting to investigate 



 
 
 
 
 
 

that whether an application of time varying forcing as in this article can improve the success of 
unpinning of spiral waves.  

5.  Acknowledgment  
We thank the Department of Physics, Faculty of Science, the Research and Development Institute 
(KURDI), the Center for Advanced Studies of Industrial Technology, and the Graduate School, 
Kasetsart University for financial support. 

6.  References 
[1] Siegert F and Weijer C J 1989 J. Cell Sci. 93 325 
[2] Nettesheim S, Oertzen A von, Rotermund H. H and Ertl G 1993 J. Chem. Phys. 98 9977 
[3] Davidenko J M, Pertsov A M, Salomonz R, Baxter W and Jalife J 1992 Nature. 335 349 
[4] Winfree A T 1972 Science. 175 634 
[5] Schmidt B and Müller S C 1997 Phys. Rev. E 55 4390 
[6] Luengviriya J, Sutthiopad M and Phantu M 2014 Phy. Rev. E 90 052919 
[7] Field R. J and Noyes R M 1974 J. Chem. Phys. 60 1877 
[8] Jahnke W, Skaggs W E and Winfree A T 1989 J. Phy. Chem. 93 740 
[9] Dowle M, Mantel R. M and Barkley D 1997 Int. J. Bif. Chaos. 7 2529 
[10] Sutthiopad M, Luengviriya J, Porjai P, Tomapatanaget B,  Müller S.C and Luengviriya C 2014 

Phy. Rev. E 89 052902 
 
 


