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Abstract. The Weather Research and Forecasting (WRF v. 3.7) model was applied to model PM10 data 

in Chiang Mai city for 10-days during a high haze event utilizing updated land use categories from the 

Moderate Resolution Imaging Spectroradiometer (MODIS).  A higher resolution meteorological lateral 

boundary condition (from 1 degree to 0.25 degree) was also used from the NCEP GDAS/FNL Global 

Tropospheric Analyses and Forecast Grid system.  A 3-category urban canopy model was also added and 

the Thompson aerosol-aware microphysics parameterization scheme was used to model the aerosol 

number concentrations that were later converted to PM10 concentrations.  Aerosol number concentration 

monthly climatology was firstly used as initial and lateral boundary conditions to model PM10 

concentrations. These were compared to surface data obtained from two stations of the Pollution Control 

Department (PCD) of Thailand. The results from the modeled PM10 concentrations could not capture the 

variability (r = 0.29; 0.27 for each site) and underestimated a high PM10 spike during the period studied.  

The authors then added satellite data to the aerosol climatology that improved the comparison with 

observations (r = 0.45; 43).  However, both model runs still were not able to capture the high PM10 

concentration event.  This requires further investigation. 

1. Introduction 

Seasonal blankets of haze cover Northern Thailand every dry season, which occurs from around mid-

February to May.  One of the main causes of this haze is the burning of agricultural waste from highland 

corn farms from commercial contract farming, majority of which belong to agricultural conglomerate 

companies, which sources corn from Thailand, Myanmar, Laos and Vietnam.  This crop change, from rice, 

is a response to the increasing demand for animal feed and rising corn prices.  It also yields quick earnings 

as corn can be harvested in four months.  Other causes include forest burning by hunters to displace 

wildlife, vehicular emissions, urban sprawl, rubbish burn, harvesting of exotic mushrooms and enhanced 

biogenic volatile organic carbon (VOC) emissions due to land use change and increased temperatures. 



 

 

 

 

 

 

Aerosols and particulate matter (PM) are some of the components of haze.  They affect both health and 

climate.  PM10, or particulates having a size of < 10 µm, increases the risk of tracheal, bronchial and lung 

cancer.  Thailand also sets lower air quality standards than global benchmarks for PM10 at 120 μg/m3.  The 

World Health Organization sets it at 50 μg/m3. 

 

Aerosols also affect the climate by modifying cloud microphysical properties producing increased cloud 

albedo (first indirect effect) and reduced cloud droplet size that may delay and reduce precipitation (second 

indirect effect) [1].  Related to the second indirect effect is the phenomenon called aerosol enhanced 

conditional instability. In a polluted environment, with strong absorbing aerosols, greater amounts of moist 

static energy build up during daytime because convection is largely suppressed by the aerosol-radiation 

interaction compared to the clean case [2]. 

 

In February 2011, Oanh et al. analyzed the effect of meteorology and emissions for Chiang Mai City, 

during the March 2007 haze episode [3].  In the study, it was pointed out that due to the lack of adequate 

emission input data for this region required for chemical transport modeling to predict the haze, the 

climatological approach in combination with statistics were utilized.  However, in December 2011, 

Amnuaylojaroen et al. was able to use the California Mesoscale Puff (CALPUFF) model, driven by the 

Weather Research and Forecasting (WRF) model, to investigate PM2.5 distributions as well as the relative 

contribution of fine fraction (PM2.5) and coarse fraction (PM10-2.5) to PM10 fraction from forest fires in 

the Chiang Mai basin also for March 2007 [4]. In the study, it was found out that strong atmospheric 

stability and light low-level winds over Chiang Mai were the favorable conditions for particulate matter 

accumulation. 

 

In this work, the Weather Research and Forecasting (WRF) model [5] version 3.7 was utilized with the 

Thompson aerosol-aware microphysics scheme [1] to simulate PM10 concentrations in Chiang Mai City 

without chemistry coupling to provide a more computationally cost-effective model setup for potential 

aerosol operational forecasts. 

2. Methodology 

2.1. Numerical Weather Prediction 
In numerical weather prediction (NWP), physical laws of motion and conservation of energy that govern 

the evolution of the atmosphere (the dynamics) can be written into mathematical equations that can be 

solved numerically.  For example, 
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where ∆A/∆t is the change in a forecast variable, A, at a particular point in space with respect to time, t, and 

f(A) describes the physical processess that can cause changes in the forecast variable.  Values of 

meteorological variables later in time are calculated by finding their initial values and then adding the 

physical forcing, f(A), that acts on the variables during the forecast period.  This can be mathematically 

represented as, 

 

A
forecast

= A
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+ f (A)∆t     (2) 

 

with the actual equations used are called the primitive equations.  These equations dictate the forces or 

dynamics that give movement to air.  It includes thermodynamic changes occurring in the atmosphere 

calculated from momentum, mass, energy and moisture conservation laws.  Equally essential are: processes 

that occur at scales smaller than the model can resolve; energy, water and momentum exchanges between 

the atmosphere and other sources such as land, ocean and solar radiation; and cloud and precipitation 

physics.  In NWP, the atmosphere is divided into smaller grid boxes (the size of which is called model 

resolution) where all these processes are calculated over an area which the model runs called the model 

domain [6]. 



 

 

 

 

 

 

2.2. Dynamical Downscaling and Model Parameterization 

NWP models are usually driven by coarse spatial resolution (e.g. 1
o
 x 1

o
) global climate models that are 

unable to resolve sub-grid scale features (i.e. clouds, topography, etc.).  In order to perform regional and 

local impact studies, downscaling has to be performed.  One form is dynamical downscaling, where output 

from the coarse resolution model is used to drive a higher spatial resolution model.  One such model which 

can perform dynamical downscaling is the Weather Research and Forecasting (WRF) model.  This is used 

in this study. 

 

However, even when dynamical downscaling is performed, there are still small-scale atmospheric 

processes that NWP models cannot resolve.  The model must therefore account for the aggregate effects of 

these small-scale processes.  This is called parameterization [7]. Some of the physical processes that are 

typically parameterized by models are condensation, turbulence, phase changes, surface roughness and 

deep convection.  In order to produce fast aerosol simulations, parameterizing microphysics processes are 

essential. 

 

Microphysics refers to the amount, type, processes (e.g. phase changes) and interaction between 

different condensates or hydrometeors (e.g. water vapor, cloud, rain, etc.).   In this study, the Thompson 

aerosol-aware microphysics scheme was used.  It was first utilized to investigate the effects of aerosols on 

cloud development and precipitation.  It incorporates the activation of aerosols as cloud condensation 

nuclei (CCN) and ice nuclei (IN).  In order to decrease the computational burden and complexity, the 

specific aerosol types as well as the chemical composition of multiple aerosol categories were simply 

referred to as “water-friendly” aerosols, or Nwfa (hygroscopic aerosols) and as “ice-friendly” aerosols, or 

Nifa (non-hygroscopic ice-nucleating aerosols). Nwfa is the sum of sulfates, sea salt and organic carbon 

which are related to PM10 concentrations. 

 

Normally, PM10 modeling involves coupling to chemistry.  However, coupling to chemistry proves to 

be computationally expensive as shown by the study of Wang et al. in 2010 wherein approximately 8000 

computation hours per model month were needed [8].  This is due to the increased number of variables to 

simulate.  It was also mentioned in [1], that the simplest WRF model with chemistry options available at 

that time increased the number of variables by over a factor of 2 massively impacting computer memory 

and time.  This defeats the purpose of forecasting an event, which needs updating model runs for at least 

every 6 hours. 

 

2.3.Initial and Lateral Boundary Conditions, Model Domains and Validation Sites 

The model runs in this study used the NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and 

Forecast Grid lateral boundary conditions [9] with a 10 km outer domain (parent) covering most of 

Indochina and a 3.33 km inner domain (child) encompassing most of northern Thailand.  WRF v. 3.7 was 

ran for the period of April 10-20, 2016 UTC coinciding with the time period before, during and after the 

Thai New Year.  The Thai New Year, or Songkran, is a big event in Thailand with many tourists coming in 

to celebrate this holiday.  It also coincides with the recurring biomass burning season in northern Thailand. 

 

Since the validation sites for PM10 concentrations are in an urban environment and sensitive to surface 

winds, the MODIS land use dataset and a 3-categogy urban canopy model were utilized.  The optimum 

cumulus parameterization obtained in [10], was also used.  The rest of the parameters were kept at the 

WRF v. 3.6 defaults.  The comparison sites for Chiang Mai city for PM10 concentrations are at the 

Pollution Control Department (PCD) air quality monitor stations located at the Chiang Mai City Hall and at 

the Yupparaj Wittayalai School. 

 

Initial and lateral boundary conditions for the aerosol number concentrations were derived from multi-

year (2001-2007) global simulations from the Goddard Chemistry Aerosol Radiation and Transport 

(GOCART) model including mass mixing ratios of sulfates, sea salts, organic carbon, dust and black 

carbon with 0.5 deg longitude by 1.25 deg latitude grid resolution [1].  This is designated as the control run. 

In order to incorporate up-to-date aerosol emission data, aerosol number concentrations derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS), on board Terra and Aqua satellites, were added 



 

 

 

 

 

 

to the aerosol climatology for the initial conditions.  Aerosol number concentrations were then converted to 

PM10 concentrations using the method described by Mönkkönen et al. in 2004 [11].  This is designated as 

the experimental run. 

3. Results and Discussion 
After the simulations, the following model verification metrics [12] were used to assess the performance of 

the model: mean error, (multiplicative) bias, mean absolute error, root mean square error, mean squared 

error and correlation coefficient.  A paired sample t-test (with 99% confidence interval) was also done to 

assess whether the performance between the control and the experimental model runs was significantly 

different. 

 

In Figure 2, simulations using the 2001-2007 GOCART climatological and MODIS aerosol number 

concentration boundary conditions (referred to as “climatology” and “MODIS” hereafter, respectively) are 

compared to observations at the Chiang Mai city hall and at the Yupparaj Wittayalai PCD stations.  The 

calculated model verification metrics are also shown in Table 1.  For both sites, the MODIS model runs 

outperformed the climatology runs for all the verification metrics. A statistically significant difference was 

also obtained between the two datasets.  

 

Table 1. Model verification metrics calculated after comparing the climatology and the MODIS model runs 

to PM10 observations at the Chiang Mai city hall and Yupparaj Wittayalai School PCD stations. 

 
 

Model outputs using MODIS captured more the variability at the two sites (r = 0.45; 0.43) as compared 

to the climatology run (r = 0.29; 0.27).  However, both model runs failed to capture the high PM10 episode 

that occurred between April 16 – 17, 2016.  This would have to be investigated in future work. 

4. Conclusion and Recommendations 

Weather models nowadays are usually characterized as having high resolution, fast computational speeds, 

relatively accurate and fairly simple representations of the state of the atmosphere in terms of 

meteorological variables such as temperature, pressure, relative humidity, rainfall, wind speed and wind 

direction.  However, when considering air pollution concentrations, one normally couples these weather 

models with chemistry modules.  Chemistry-coupled weather models are also characterized as having high 

resolution, but they are normally slow, have moderate accuracy and complicated.  This study came up with 

PM10 simulations with speeds comparable to weather forecasts.  This was attained by avoiding chemistry 

coupling, but instead utilized an aerosol-aware microphysics scheme combined with up-to-date satellite 

information of aerosol number concentrations for its initializations.  The model results fairly captured the 

variability in the observations, but had difficulty simulating certain high PM10 events. This has to be 

studied further. 
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Figure 2. Simulations using the 2001-2007 GOCART climatological (solid line) and up-to-date MODIS 

(dashed line) aerosol number concentration boundary conditions compared to observations (circles with 

line) at the Chiang Mai city hall (upper panel) and Yupparaj Wittayalai School (lower panel) PCD stations 

(Note: the multiplicative bias calculated in Table 1 were applied for the model runs).  Also shown are the 

World Health Organization (WHO) and the Thailand 24-Hour Mean Air Quality Guideline (AQG) value 

for PM10. 


