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Abstract. The ground state entanglement of the system, both in discrete-time and
continuous-time cases, is quantified through the linear entropy. The result shows that the
entanglement increases as the interaction between the particles increases in both time scales.
It is also found that the strength of the harmonic potential affects the formation rate of the
entanglement of the system. The different feature of the entanglement between continuous-time
and discrete-time scales is that, for discrete-time entanglement, there is a cut-off condition. This
condition implies that the system can never be in a maximally entangled state.

1. Introduction
The idea that time flow constitutes from discrete-steps was suggested by many physicists
[1, 2, 3, 4]. The question which could be raised from this idea is whether or not there are
similarities or differences of the physical behaviors at the discrete-time scale and continuous-
time scale. To answer this question, the system of two coupled harmonic oscillators is used as
a toy model to study at the quantum level. The comparison between the discrete-time wave
function and the continuous-time wave function is investigated. Furthermore, an important
feature in quantum mechanics called entanglement is examined in detail. What we expect to
observe in this study are some extra-features arising due to the discreteness of the time flow.

The organisation of this article is as follows. In Section 2, the formulation of the equations
of motion of the two coupled oscillators is set up in both discrete-time and continuous-time
scales. Then, in Section 3, the discrete-time wave function is computed and with the modified
uncertainty principle. Once the wave function is obtained, the linear entanglement entropy is
computed in Section 4 together with the discussion. Finally, the conclusion is provided with
some remarks.



2. Discrete-time coupled harmonic oscillators
The system consists of two identical particles with unit mass and the interactions between
themselves, and, between the particles and the environment are modelled by Hooke’s law with
coupling constants σ and k, respectively. The Hamiltonian of the system is given by

H(p1, p2, x2, x2) = p21/2 + p22/2 + kx21/2 + kx22/2 + σ(x1 − x2)2/2 , (2.1)

where pi and xi are the momentum and position of the ith particle and i = 1, 2. To decouple
the Hamiltonian, the normal coordinates X1 = (x1 + x2)/

√
2 (mode 1) and X2 = (x1 − x2)/

√
2

(mode 2) are used to transform Eq. (2.1) into
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where Pi are new momentum variables and the angular frequencies are ω1 =
√
k (mode 1) and

ω2 =
√

(k/2 + σ)2 (mode 2). We now introduce the discrete-time Hamiltonian [5, 6] given by
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where Pi(n) and Xi(n) are the discrete-time momentum and position of the ith particle at time
n. The shifted momentum is P̃i = Pi(n+ ε), where ε is the discrete-time step. The discrete-time
Hamilton equations are ∂H/∂P̃i = (X̃i−Xi)/ε and ∂H/∂Xi = −(P̃i−Pi)/ε, resulting in discrete
maps

X̃i = (1− ω2
i ε

2)Xi + Piε , and P̃i = −ω2
i εXi + Pi . (2.4)

From the first equation of (2.4), we find that Pi = [X̃i − (1 − ω2
i ε

2)Xi]/ε then P̃i = [ ˜̃Xi −
(1 − ω2

i ε
2)X̃i]/ε. Inserting these two equations into the second equation of (2.4), we obtain

˜̃Xi +Xi = 2(1− ω2
i ε

2/2)X̃i and therefore X̃i +X˜ i = 2(1− ω2
i ε

2/2)Xi which is the discrete-time
equation of motion of the system. Note that, under the continuum limit ε→ 0, the continuous-
time equation of motion for the system is recovered.

3. Discrete-time wave function
To obtain the discrete-time wave function, we start with the function [8]

Îi = P̂ 2
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)
/2 , (3.5)

where P̂i and X̂i are operators. Since Îi is invariant under the map (2.4):
˜̂
Ii = Îi, then it can

be treated as the effective Hamiltonian resulting in
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Ψ(X1, X2) = EΨ(X1, X2) ,

(3.6)

where Î = Î1 + Î2 is the total effective Hamiltonian operator and E is the total energy of the
system. Writing the wave function as Ψ(X1, X2) = ψ(X1)ϕ(X2) and using the transformations
ϕ(X1) = w(X1)exp
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(3.7)



Figure 1. Contour plots of the probability density for ground state (a),(b) and first excited
state (c),(d) for k = 0.1 and σ = 0.3.

where n,m = 0, 1, 2, 3, .... and Hy(x) is the Hermite Polynomial of order y. The total energy

now is Enm = En + Em, where En = 2~Ω1 (n+ 1/2) and Ω1 = ω1

√(
1− ε2ω2

1/4
)

(mode 1),

and, Em = 2~Ω2 (m+ 1/2) and Ω2 = ω2

√(
1− ε2ω2

2/4
)

(mode 2). Under the continuum limit

ε → 0, the wave function (3.7) is identical to that of the continuous-time harmonic oscillators.
The contour of the probability density is shown in Fig. 1 for the case of ε = 0 (continuous-time
case), and ε = 2. According to Fig. 1, the probability of the discrete-time wave function is
a little bit broader than that of the continuous-time wave function. This results from the fact
that both the exponential terms exp

[
−ΩiX

2
i /(2~)

]
and the Hermite Polynomials Hy(

√
Ωi/~Xi)

contain the discrete-time parameter ε. Furthermore, we find that the uncertainty principle for
each mode in this discrete-time setting is altered to

σXiσPi = ~ (yi + 1/2)
√
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i /4Ω2

i , (3.8)

where y1 = n and y2 = m. This leads to the modified Heisenberg algebra [Xi, Pi] =

i~
√

1 + ε2ω4
i /4Ω2

i .

4. Entanglement entropy of the ground state
To study the entanglement behavior of the ground state of quantum discrete-time coupled
harmonic oscillators, we use the linear-entropy SL given by

SLj = 1− Tr(ρ2j ) , (4.9)

where j = 1, 2, ρj = Tr 2
j
ρ12 =

∫
ρ12dx 2

j
is the reduced density matrix of the system j, and ρ12

is the full density matrix. Note that, for a global pure state, the linear-entropy of the reduced
state is bounded between 0 ≤ SL ≤ 1, where SL = 1 indicates the whole system is maximally
entangled and SL = 0 indicates a separable state. The full density matrix of the ground state is
ρ12(x1, x2;x

′
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′
2) = Ψ00(x1, x2)Ψ

∗
00(x

′
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′
2) and therefore
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Figure 2. The relation between the linear entropy and the internal interaction (σ) with different
amount of the discrete-time scale and the external interaction (k).

According to Fig. 2, in the continuous time(solid lines), the entanglement of the system at the
ground state increases as the interaction between particles σ increases, while the interaction with
environment k is fixed. The system approaches to the maximally entangled state SL → 1 as the
parameter σ approaches to infinity implying that the oscillation mode Ω1 (the center of mass
motion) significantly dominates over the oscillation mode Ω2 (the relative motion). We also find
that when the parameter k increases, the entanglement will rise more slowly with the increasing
value of the parameter σ. This means that the oscillation mode Ω2 becomes more significant
with increasing k which then makes the oscillation mode Ω1 more difficult to overcome the
oscillation mode Ω2. In the case that the parameter k is infinitely large, the entanglement of the
system is extremely suppressed due to the domination of the oscillation mode Ω2. We may now
say that less relative motion (the oscillation mode 2) of the system implies more entanglement.

In the discrete time case, the entanglement of the system behaves almost the same with the
continuous time case. Except that we cannot freely vary the values of the parameter σ and the
parameter k since there are the cut-off conditions coming from the fact that both Ω1 and Ω2 must
be positive values. This implies that 0 ≤ ω2

2 < 4/ε2 since ω2 ≥ ω1. In terms of σ, this will give
the inequality 0 ≤ σ < 2/ε2 − k/2 which also implies that 0 ≤ k < 4/ε2. Both k and σ cannot
satisfy their respective upper bounds (k = 4/ε2 and σ = 2/ε2− k/2) because that will cause the
wave function (3.7) to vanish which means the state does not exist (implying that the motion of
the system cannot be in any oscillation modes). If k > 4/ε2 (which implies σ > 2/ε2 − k/2) the
oscillation frequencies Ω1 and Ω2 will become imaginary and the wave function is now not well
define. This is the reason that k ≥ 4/ε2 and σ ≥ 2/ε2 − k/2 present unphysical situations and
have to be excluded from the our consideration. In the physical situations, if we fix the value of
the parameter k, the entanglement of the system will increase as the parameter σ increases and
the entanglement will only asymptotically approach 1, but never reaches 1, before the parameter
σ gets to the cut-off point σ = 2/ε2− k/2. Increasing the value of the parameter k will suppress
the entanglement of the system like those in the continuous time case.

5. Concluding discussion
We can analyse and conclude these results from two different perspectives.

Firstly, if we take the view that the discreteness of time is a fundamental property of the
universe, we find that the discrete-time flow affects the system behaviors. Some extra-features,
e.g. broader probability contour, modification of the uncertainty principle and cut-off conditions
for the ground state entanglement entropy, naturally showed up and will be washed away under
the continuum limit [7]. Interestingly, we find an unexpected relationship between the discrete-



time step ε, the strength of the mutual interaction between the two subsystems σ, and the
strength of the harmonic potential k. In particular, we find that σ is bounded from above
by a function of k and k is also bounded from above by a function of ε. This behavior is
completely different from the continuous-time scale (ε = 0), where the values of k and σ are
totally independent.

Secondly, if we look at these results from the operational point of view. By assuming that
time is fundamentally continuous but treating that the discreteness arises from experimental
samplings of the positions and velocities of the system at a given frequency determined by 1/ε,
we interpret that the difference in the linear entropy for each value of ε is due to the difference in
the sampling rate itself. We also discover that the bounds are not actually physical but appear
due to the fact that the corresponding cut-off sampling rate (1/εcut−off =

√
(σ/2) + (k/4)) is

equal to the Nyquist sampling rate of the system. Thus the reason the observation becomes
unphysical beyond that bound is because the sampling rate is less than the Nyquist frequency,
which can potentially make the results of the observation become distorted.
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