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Abstract. We study a subclass of GLPV modified gravity theories generated by a general
disformal metric g, = gu»+D($, 0¢)0,.$0, ¢. By analyzing the background evolution equation,
we have found that such theory cannot provide the self-accelerating solution.

1. Introduction

The disformal transformation for gravity has been introduced by Bekenstein in 1992 [1]. It is the
most general mapping between the metric involving one scalar field and preserve diffeomorphisms
of spacetime. This transformation can be written as

g,uy = C(¢? Y)guu + D(¢7 Y)au(ﬁ@,/d) ) (1)

where Y = ¢"70,,¢0,¢ a kinetic term of the scalar field ¢. C, D are arbitrary functions of the
scalar field and its kinetic terms.

These called the conformal and disformal factor, respectively. In order to study the influence
of the disformal factor on the evolution of background universe, we will set C(¢,Y) = 1 in this
paper. We call this transformation the general disformal because the disformal factor depends
also on the kinetic terms of the scalar field beside a single scalar field.

2. The disformal gravity action
The disformal gravity action is induced from disformal transformation of the metric in the
Einstein-Hilbert action |,

Sdisf[g,uu] = SEH[?#V] = i /d4x\/ng(gp,u) ) (2)

where we have set ¢ = 1 and x = 87(G. From disformal metric transformation g, —
G + D(0,Y)budn, (¢ = Vudp = 0u¢), we can directly obtained the basic quantities such
as the inverse and the determinant of disformal metric necessary for deriving the the disformal
action, which are respectively read

gwj :gwj _72D(¢7 Y)qu(by ) §29(1+D(¢7 Y)Y) 59/72 ’ (3)



where v2 = 1/(1 + D(¢,Y)Y) and ¢* = VF$ = ¢g"0,¢. We then need to know the

transformation of the Levi-Civita connection (defined by ?agwj =0):

T =T, + Kp, (4)

«

where K, = %gaﬂ(vugyﬁ + V39,5 — V59,,)- The Riemann tensor (R g = R%3,,(9,,)) then
can be computed from

R gy = R g + 2V, Kjg + 2K, K (5)

Consequently, the Ricci scalar now given by R = ﬁ’“’ﬁwj. After a somewhat tedious but
straightforward calculation, we obtain

R =R—~2D(06" — $d™) + {wwmw - V,DO¢ qﬂ , (6)

where O = V*V, = ¢"¢,¢, and ¢, = V,V,¢ . The disformal action then reads (setting
2k =1)

s = / d4x\/fgf _ / Py =g {fj — 4D (062 = 68" + 7V, Déad™ — V, D0 ¢”}} .

This action can be recast into the form of covariant GLPV action [2]: S = [d%z\/—g Z?:2 Ly
where

L3 = (Cg +2Y ng)D¢ s (7)
Ly = (B4 + 05) R - 2(B4 + C5)Y(D¢2 - gf)il,) + F4€“Vpgeu/375¢y¢ﬂgf)g¢g , (8)
~ 1~ vpo «
Ly = Gs5Gud™ + 3Gay (06" =300 6%, + 26}, ) + Fse e, 56" 6,0063¢h . (9)
where ¢/P? is a Levi-Civita pseudotensor. In our case, it can be shown that By = 1/v, C3

—3 [ADgdY Ay = —3DyY? —YCyy, Ay = ADY — 2, C5 = G5 = F5 = 0 ,Fy
Y~2(By+ Ay — 2Y Byy) = —yDy .

3. The dynamics of background spacetime
For simplicity we will study the disformal gravity obtained from the disformal transformation
of FLRW metric

ds? = —N2(t)dt? + a®(t)d;;dx’da’ . (10)

From this metric we can obtained the non-zero components of Levi-Civita connection. They
read

a’H
N2

N
Fgo = N F?j =

~ 8ij, T = HO' . (11)

We then consequently obtained
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The disformal Lagrangian now can be written as
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where the first two lines are £4 and the third line is £9 + L£3. The evolution equations of the
background spacetime can be obtained from varying the action with respect to the metric. In
this case we must vary the action with respect to N(t) and a(t). For simplicity, we will set
N(t) =1, N(t) = 0 after calculate the Euler-Lagrange equations

oL d (0L oL d (oL d? (0L
aN_<3N> 0, Ga_dt<8a>+dt2<8d>_0’ (13)

where £ := /=gL = Na®L, we respectively obtain

1-Y?Dy
= (A3 —2YA — H?*y————~ 14
0 ( 2 2Y) Pm +3 1 +DY 3 ( )
0 = HY¢(DyY —2(D+YDy)d) + 7(2a + H?) + Az + pm, (15)
where H = a/a is the Hubble parameter, p,, and p,, are the energy density and pressure of
matter respectively, they are given by p,, = Tpy = (113 655’” , Pmbij = Ti; = 51: m;; . Since

the disformal gravity considered in this work is a sub class of the GLPV theory Wthh is the
covariantized Galileon theory [3], we check whether the acceleration of the universe can be
driven by the kinetic terms of scalar field as in the Galileon theory[4,5]. In the flat FLRW
background, we have v = (1 — D¢?)"1/2, so that D¢? should lie within the range (—oo,1)

r (1,00). However, it follows from the above equations that « should be unity during matter
dominated epoch and should be larger than unity during the acceleration of the universe. Hence,
0 < D¢? < 1 throughout the evolution of the universe. Since D¢? is always less than unity, the
main contribution in the above equation that can make ¢ > 0 is expected to be proportional
to py/3 + Az, where py = 2Y Ay y — Ay, From this rough analysis, we expect that for the
disformal gravity considered here, the accelerated expansion of the universe cannot be driven
by kinetic terms of the scalar ﬁeld. To confirm this analysis we solve the equations of motion
for the background universe numerically. By varying the action with respect to ¢ we obtain the
equation of motion for ¢

0 = ¢[Asy +2YApyy + gHW [D(1-Y?Dy +2Y*Dyy) — 2Y D]



+Y (5Dy —3Y2D% +2Y Dyy) + 3Hé (AQ,Y Y (D+YDy)(EH ¢ d)>

2 a
% <A2,¢ —2Y Ay ve + gH273 [3Y2D7¢Dltr};D;/ —2Y?D 4y — YD,¢]> : (16)
For concreteness, we choose the disformal coupling and As as
D= Mt Me(y)e 4, = %M,j*“?’(—Y)’\?’ — MAe %, (17)

Here, M, M, and M, are the constant parameter with dimension of mass, while A1, As, A3 and
A4 are the dimensionless constant parameters. My setting M? = M,? = M? = Hy where Hj is
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Figure 1. The equation of state parameter wr as a function of log;, a for various values of Ay,
)\2, )\3 and )\4.

the present value of the Hubble parameter, we have found that the acceleration of the universe
at late time can occur only if scalar field ¢ slowly evolves, i.e. ¢ < H. Hence, the accelerated
expansion of the universe is driven by the potential terms rather than the kinetic terms of the
scalar field. As a result the evolution of wr = —2H /(3H?) — 1 always mimics the evolution of
wr for ACDM model as shown in figure 1.

From this analysis, we conclude that for the disformal gravity considered here, the accelerated
expansion of the universe cannot be driven by kinetic terms of the scalar field.

4. Conclusion

In this work we have studied the gravity theory generated by general disformal transformation
which can be shown that it fits into the class of GLPV theories. By analyzing the background
evolution equations we have found that this theory does not provide the self-accelerating solution
as generally expected from GLPV theories.
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