
 

 
 

 

 

 

Modelling Infectious Disease Spreading Dynamic via 

Magnetic Spin Distribution: The Stochastic Monte Carlo and 

Neural Network Analysis 

Yongjua Laosiritaworn
1
, Yongyut Laosiritaworn

2
 and Wimalin S. Laosiritaworn

3
 

1
Department of Disease Control, Thailand Ministry of Public Health, Nontaburi, 

Thailand 
2
Department of Physics and Materials Science, Faculty of Science, Chiang Mai 

University, Chiang Mai, Thailand 
3
Department of Industrial Engineering, Faculty of Engineering, Chiang Mai 

University, Chiang Mai, Thailand 
Corresponding author’s e-mail address : wimalin@hotmail.com 

Abstract. In this work, the disease spreading under SIR framework (susceptible-infected-

recovered) agent-based model was investigated via magnetic spin model, stochastic Monte 

Carlo simulation, and Neural Network analysis. The defined systems were two-dimensional 

lattice-like, where the spins (representing susceptible, infected, and recovered agents) were 

allocated on lattice cells. The lattice size, spin density, and infectious period were varied to 

observe its influence on disease spreading period. In the simulation, each spin was randomly 
allocated on the lattice and interacted with its first neighbouring spins for disease spreading. 

The subgroup magnetization profiles were recorded. From the results, numbers of agents in 

each subgroup as a function of time was found to depend on all considered parameters. 

Specifically, the disease spreading period slightly increases with increasing system size, 

decreases with increasing spin density, and exponentially decays with increasing infectious 

period. Due to many degrees of freedom associated, Neural Network was used to establish 

complex relationship among parameters. Multi-layer perceptron was considered, where 

optimized network architecture of 3-19-15-1 was found. Good agreement between predicted 

and actual outputs was evident. This confirms the validity of using Neural Network as 

supplements in modelling SIR disease spreading and provides profound database for future 

deployment. 

1.  Introduction 

Being diseased is an irregular condition that causes disordering or malfunctioning of a living 
organism. Disease usually causes pain, stress, suffering, or even death. There are many types of the 

disease, but the one that mostly affects the community in terms of spreading is the infectious disease, 

which resulted 9.2 million deaths in 2013 (about 17% of all deaths) [1]. This makes the modelling of 

the infectious disease spreading very important for predicting, controlling, and managing health 
policies. Modern disease spreading modeling can be categorized as deterministic compartment and 

stochastic agent-based models. The deterministic is to assign rate of state changing among subgroups 

to calculate number of agents in each subgroups over time. It is applicable for large populations (e.g. 
national scale), but usually fail in ‘small world’ group as fluctuation is ignored. However, the 

stochastic agent-based investigates each individual to find the course of disease spreading. It is then 

appropriate for small communities such as schools, hospitals, solider camps, etc.[2]. Although having 



 

 
 

 

 

 

benefits in ‘small world’, the agent-based is comparatively less investigated due to its complication 

with degrees of freedom associated.  Therefore, this work tried to alleviate the computation difficulties 

through discrete lattice analysis and disease spreading update via Monte Carlo simulation. In addition, 

with extensive simulation datasets, the Neural Network was used to ease complex in modelling the 
‘Big Data’ by establishing the relationship among parameters via the knowledge based analysis. 

2.  Theories and methodologies 

2.1.  The Spin Hamiltonian and Monte Carlo simulation 
Modelling of disease spreading generally categorizes individual agent in subgroups in specifying stage 

of epidemic. For an influenza type disease, the subgroups are the susceptible (S; not yet infected), the 

infected (I; sick and infectious), and the recovered (R; immune). With discrete similarities between 

subgroup and spin model, the spin Hamiltonian   
ij ij i j

J  was considered and simulated using 

Monte Carlo technique [3]. The spin i at site i
th

 refers to the agent being in susceptible state (+1;S), 

infected/infectious state (1;I), or recovered state (0;R). Jij = 1 was used as unit of disease 
transmission strength, where the transmission range covered first neighbouring distance. Further, to 
comply with disease spreading in epidemiology, the spin is only allowed to change from +1(S) to 

1(I) upon disease adopting, and from  1(I) to 0(R) when being in the I state up to infectious period.  
In Monte Carlo simulation, the system size (N = L

2
), the spin concentration (c), and infectious 

period (Infp) were varied from 50 to 100, 0.01 to 0.10, and 10 to 200 Monte Carlo step per spin (mcs), 

respectively. One mcs is the unit of simulation time, being equal to random allocation of  N spins. For 
each condition, all n = cN spins (agents), were randomly allocated on the lattice cells. One spin was 

assigned in the I state and the other were in the S state. After that, all spins changed state from S  I 

and I  R using Hamiltonian minimization and criteria specified above. Time to perform this in one 
round was assigned as 1 mcs. These procedures repeated until simulation ends. Each simulation was 

carried out up to 2000 mcs and for each condition, and 1000 independent runs were performed to 

average out random noises. For the observables, the sub-group magnetization i.e.  
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were considered. Then, the disease spreading period was defined from the least time that 
I 1/m n .  

2.2.  Neural Network 

Neural Network (NN) is a programming technique with ability in modeling relationship between given 
inputs and related outputs from examples [4]. The NN is made up of neurons or nodes connected. 

Each node locates in input, hidden, or output layers. The NN then learns relations by tuning weights 

during the training.  In the training, input-output pairs are passed through the model and the weights 
adjust to minimize the error between the network and the desired outputs. Once the error is minimal, 

the network is trained and ready to predict outputs for unseen inputs. In this study, the Back 

Propagation (BP) algorithm was considered. The BP initially performs a ‘forward pass’, which the 

output of each node is calculated from weighted sum of inputs (Sj), i.e. j j iji
S a w , where ai is the 

activation level, and wij is the weight from node i to node j. Then, the logistic transfer function, i.e. 

   1/ 1 jS

jg S e


  , were applied and g(Sj) becomes the output of node j. The same procedure 

repeats for all nodes. After that, the BP performs a ‘backward pass’ where the errors j were calculated 
to update the weight of each node. These processes repeat for new inputs until the error is minimized. 

3.  Results and discussions 
From the simulation results, typical time dependence of m

S
, m

I
 and m

R
 were found as shown in Fig. 

1(a) [2]. As is seen, m
S
 drops as S changes to I until there is no S left. With continue decreasing S, m

I
 



 

 
 

 

 

 

agents reach maximum, start declining, and result in a peak-like function. Finally, all I agents get 

recovered (IR), so only R agents exist. Then, with varying spin/agent densities (c) in Fig. 1(b), the 
system/lattice sizes N Fig. 1(c), and the infectious period (Infp) in Fig. 1(d), the m

I
 peaks change in 

theirs characteristic. Specifically, in Fig. 1(b), the denser of the population induces more infectious 

contact resulting more I agents at the beginning. Hence, the time for infection to completely cease 
(disease spreading period) does not very much extend over the infectious period of 100 mcs. On the 

other hand, in Fig. 1(c), the larger N gives more spaces for the agents. Therefore, even with the same 

density c = 0.01, the smaller N gives more chances for having infectious contact so disease spreading 

period declines with decreasing N. However, as is seen, this N influence is somewhat insubstantial. 
Note that there is a sharp drop close to the peak for small N’s which is due to the recovery of the first I 

agent. Therefore, in this normalized fashion, 1 agent missing from small N’s (and hence n’s) is 

somewhat prominent. Finally, in Fig. 1(d), the longer infectious period induces the larger disease 
transmission period as expected [5]. However, the relationship between these two periods is not trivial 

in formulating, especially when also taking other N and c parameters into account.    

  

  

Figure 1. (a) The typical normalized SIR curves for N = 10
2
, c = 0.01, and infectious period of 

100 mcs. On the other hand, (b) to (c) show the normalized I with varying c, N and infectious 

period (Infp). If not varied, the parameters used were c = 0.01, N = 100
2
, and Infp = 100 mcs. 

Therefore, all disease spreading period data were supplied to the Neural Network (NN) modelling. 
The spin density, the lattice size, and the infectious period were used as input parameters, whereas the 



 

 
 

 

 

 

disease transmission period was used as the output parameter. Two hidden layers with up to 40 nodes 

in each layer were used in extensive search for extracting the optimized network architecture. The 

optimized one was found at 3-19-15-1, where these numbers are for number of nodes in input, first 

hidden, second hidden and output layer respectively. The good agreement from the predicted and 
actual real date was found when performing scattering plot (not shown). The linear trend was 

suggested with very good R-square  0.9937. Then, the NN weights were used to predict the disease 
spreading data. Examples can be shown in Fig. 2 which tells how the spreading period depends on N, 

n and Infp parameters. Specifically, the disease spreading period was found to slightly increases with 

increasing N, decrease with increasing c, and exponentially decay with increasing Infp (except at low 
Infp and low c due to very few infectious contacts). These results, where applicable, qualitatively 

correspond with previous using different technique, i.e. the deterministic [6].  

  

Figure 2. The disease spreading to infectious period ratio for (a) N = 50
2
 and (b) N = 100

2
. The 

discrete data points were from simulation and the lines were from NN interpolation. 

4.  Conclusions 

In this work, the disease spreading was investigated using SIR model, the modified spin 

Hamiltonian, the Monte Carlo simulation, and the Neural Network (NN) analysis. The time dependent 
behaviour of the subgroup magnetization was revealed and used to extract the disease spreading 

period. The period varies with changing system size, spin density and infectious period as expected. 

The NN was then used to establish complex relationship among parameters with good accuracy. This 
then provides a sophisticated tool for multi-dimensional modeling of SIR problem, and provides 

another fruitful step in modeling infectious disease spreading in the nowadays Big Data era. 
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