
An introduction to python
mcnet computing school 2016

Chris Pollard

University of Glasgow, MCNet

2016 05 16

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 1 / 36

Outline

Outline

I Intro

I Design choices

I Syntax

I Built-in types

I Libraries

I Intro to NumPy

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 2 / 36

Intro

Python

I Python is a general purpose programming language (python.org)

I Development begun in 1989 by Guido van Rossum

I Available on many, many platforms (usually standard on UNIX)

I Latest versions: 2.7.11, 3.5.1

I Several implementations (usually CPython, but others for JVM,
self-hosted, etc)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 3 / 36

http://python.org

Intro

Why python?

I General purpose, high-level

I Code readability is a basic design ideal

I Supports many programming paradigms (object-oriented, imperative,
functional, procedural, etc.)

I Widely supported with free + open reference implementation

I Large standard library and many third party libraries available

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 4 / 36

Intro

Why python?

It has a reputation for being beginner-friendly and fun to learn

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 5 / 36

Intro

Why not python?

So why wouldn’t you use python for a project?

I Interpreted: if we never attempt to run a piece of code, then we don’t
know if it works.

I No compile-time errors (no type checking!)

I Speed

I More from the room?

There are ways to deal with each of these drawbacks, of course!

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 6 / 36

Design

Zen of python

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
. . .
Readability counts.
. . .
Errors should never pass silently.
. . .
There should be one– and preferably only one –obvious way to do it.
. . .
If the implementation is hard to explain, it’s a bad idea.
. . .

– Tim Peters

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 7 / 36

Design

Which version should I use?

Personal recommendations:

I if you know you will run into compatibility issues (from e.g.
collaboration), pick the version that won’t cause technical problems.

I use the system installed version (unless there is no system version or
it’s very out-of-date, and you need newer features).

I use the latest version of python 3. most libraries now work with
version 3.

I otherwise get the latest version of 2.7.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 8 / 36

Design

Before we dive in

From now on, fixed width code should be valid python.

If a line starts with “>>>”, you can try it in python’s REPL: just type
“python” at you terminal (or install and run “ipython”).

Most language keywords should be highlighted in blue.

The help() function is your friend!

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 9 / 36

Syntax

Basic syntax

Python’s syntax is quite similar to C/C++.

th e n t h f i b o n a c c i number
def fib(n):

if n < 2:
return n

else:
return fib(n−1) + fib(n−2)

Notes:

I “def” starts a function definition.

I ‘#’ starts a comment.

I indentation matters (tabs not recommended).

I no semicolons

I no braces

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 10 / 36

Syntax

Control flows: for

sum o f f i r s t n f i b o n a c c i numbe r s
def fib sum(n):

s = 0
l i s t o f numbe r s f r om 0 t o n .
for i in range(n+1):

s += fib(i)

return s

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 11 / 36

Syntax

Control flows: break, continue

do e s s om e t h i n g u s e l e s s
def useless(n, m):

s = 0
for i in range(n, m):

if i < 3:
continue

elif i > 27:
break

else:
s += i

return s

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 12 / 36

Syntax

booleans

We can make things very clear even without comments:

def makeMeHappy(x, y, z):
return isGood(x) \

and not isBad(y) \
and not isUgly(z):

Remember: “True” and “False” are capitalized in python.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 13 / 36

Syntax

import

Imports are simple:

imp o r t t h e math l i b r a r y
import math
print(math.sqrt(10))

or

from math import sqrt
print(sqrt(10))

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 14 / 36

Syntax

import

We can also import the math library with a new namespace name:

imp o r t t h e math l i b r a r y
import math as m
print(m.sqrt(10))

This, however is highly discouraged due namespace clashes and difficulty
in understanding what code is doing:

from math import ∗
print(sqrt(10))

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 15 / 36

Syntax

But I need my braces

No.

>>> from future import braces
File "<stdin>", line 1
SyntaxError: not a chance

One of many easter eggs in CPython. . .

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 16 / 36

Built-in types

Commonly used types

There are a bunch of handy, commonly-used types included in the
standard library:

I Lists

I Tuples

I Strings

I Dictionaries (maps)

I Sets

I and more.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 17 / 36

Built-in types

Lists and tuples

Main difference: lists are mutable; tuples are not.

>>> a = [1, 2, 3] # a l i s t
>>> a[1] = 4
>>> a
[1, 4, 3]

>>> b = (1, 2, 3) # a t u p l e
>>> b[1] = 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support \
item assignment

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 18 / 36

Built-in types

Aside on mutability

Mutable objects (e.g. lists) have some important gotchas: for instance, in
python they are always passed by reference, so we can easily (and
accidentally) write code that does unexpected things.

>>> a = [1, 2, 3] # a l i s t
>>> b = a
>>> b[1] = 4
>>> a
[1, 4, 3]

t h i s w i l l c h a n g e t h e s e c o n d i t em i n x t o 5
i f x i s mu t a b l e and f a i l o t h e r w i s e !
def oops(x):

x[1] = 5

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 19 / 36

Built-in types

Strings

>>> a = "hello!"
>>> a[1]
’e’

t h i s wo r k s bu t i s s l ow−−−don ’ t do i n a l o o p !
>>> a += ’ world!’
>>> a
’hello! world!’

t r i p l e q u o t e s : v e r b a t i m s t r i n g
b = \
"""roses are red.
violets are blue.
Thankfully I ran out of space.
"""

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 20 / 36

Built-in types

String formatting

There are several ways to format strings; this is the preferred one:

>>> a = "hello {firstname } {lastname }!"
>>> a.format(firstname="Rick", lastname="Feyn")
’hello Rick Feyn!’

The preferred way to concatenate many strings is like so:

’’.join(mystrings)

j o i n them w i t h u n d e r s c o r e s
’ ’.join(mystrings)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 21 / 36

Built-in types

Dictionaries

Dictionaries are worth getting the hang of: they’re very fast, heterogenous,
mutable lookup tables.

>>> a = {"fact" : "Elvis lives",
"fiction" : "Burger king kills"}

>>> a["fact"]
’Elvis lives’

>>> a["fiction"] = "for real"
>>> a[42] = "life"
>>> a
{42: ’life’, ’fact’: ’Elvis lives’,
’fiction’: ’for real’}

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 22 / 36

Built-in types

Type system

t y p i n g i s s t r o n g
>>> "hello" + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate ’str’ and \
’int’ objects

t y p i n g i s d ynam i c
>>> a = 2
>>> a = "hello"

we o n l y c h e c k i f x and y can be added
when t h e + o p e r a t o r i s c a l l e d a t r u n t i m e .
def addF(x, y):

return x + y

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 23 / 36

Libraries

The python standard library

. . . is, in short, huge.

I Regular expressions (re), text handling

I datetime, calendar

I numerical tools: math, decimal, fractions, random

I system calls, shell commands (os, sys, shutil, etc.)

I threads and multiprocessing

I pickle, sqlite3, zlib, bz2, tarfile, csv

I markup (xml, html), networking, graphics

I etc.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 24 / 36

Libraries

Third party packages

In addition to an extensive standard library, python has a very useful set of
third party packages and distribution systems to handle them (e.g. pypi).

I Numerical python (numpy, scipy, matplotlib)

I Graphics (OpenGL)

I Computer vision (OpenCV)

I Database interfaces

I Web servers

I etc, etc, etc

Most packages can be easily installed with the pip command, however be
careful: quality and maintenance can be a problem for pypi packages.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 25 / 36

https://pypi.python.org/pypi

NumPy

NumPy

I The NumPy/SciPy/matplotlib suite of external packages is worth
familiarizing yourself with.

I It can improve the performance of your python code a lot by doing
the heavy numerical calculations in compiled code. . .

I . . . while providing a nice python API.

I’m going to go over some of the basic features and syntax based on the
tutorial here.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 26 / 36

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

NumPy

NumPy arrays

The primary object added by NumPy is a homogenous, multidimensional
array:

I table of elements all of the same type

I indexed by tuple of positive integers

I called “ndarray” or “array” (don’t confuse NumPy arrays with
python’s built-in array.array object.)

I useful member variables: ndim, shape, size, dtype (use help() for
more info!)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 27 / 36

NumPy

example

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
’int64’
>>> a.size
15
>>> type(a)
<type ’numpy.ndarray’>

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 28 / 36

NumPy

array creation

>>> np.zeros((3,4))
array([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 0., 0.]])

d t y p e can a l s o be s p e c i f i e d
>>> np.ones((2,3,4), dtype=np.int16)
array([[[1, 1, 1, 1],

[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 29 / 36

NumPy

array operations

Arithmetic functions are applied elementwise!

>>> a = np.array([20,30,40,50])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> c = a−b
>>> c
array([20, 29, 38, 47])
>>> b∗∗2
array([0, 1, 4, 9])
>>> 10∗np.sin(a)
array([9.12945251, −9.88031624, 7.4511316 , −2.62374854])
>>> a<35
array([True, True, False, False], dtype=bool)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 30 / 36

NumPy

more array operations

“+=” and similar operators can be very efficient: operations are
performed in place.

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a ∗= 3
>>> a
array([[3, 3, 3],

[3, 3, 3]])
>>> b += a
>>> b
array([[3.417022 , 3.72032449, 3.00011437],

[3.30233257, 3.14675589, 3.09233859]])

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 31 / 36

NumPy

array folds

Additionally, a many common helper functions for folding over an array
already exist:

>>> a = np.random.random((2,3))
>>> a
array([[0.18626021, 0.34556073, 0.39676747],

[0.53881673, 0.41919451, 0.6852195]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 32 / 36

NumPy

array slices

Remember: arrays are mutable. We can access items and set in an array
similarly to how we do for list, but with a richer syntax.

>>> a = np.arange(5)∗∗3
>>> a
array([0, 1, 8, 27, 64])
>>> a[2]
8
>>> a[2:]
array([8, 27, 64])
>>> a[0:4:2] = −1000
>>> a
array([−1000, 1, −1000, 27, 64])

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 33 / 36

NumPy

multidimensional array slices

The array slicing syntax scales well into multidimensional arrays:

>>> b
array([[0, 1, 2, 3],

[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])

>>> b[2,3]
23
each row i n t h e s e c o n d co l umn o f b
>>> b[0:5, 1]
array([1, 11, 21, 31, 41])

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 34 / 36

NumPy

but wait: there’s more!

I highly recommend having a look at the NumPy/SciPy documentation to
see what is available “for free” from these libraries: there is a lot!

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 35 / 36

Summary

Summary

That was a very quick intro to python and NumPy/SciPy.

There were many, many things not covered here (syntactic sugar,
exceptions, classes and inheritance, advanced keywords, decorations, etc.)

The best way to learn it is to use it!

http://learnpythonthehardway.org/book/
http://projecteuler.net/
https://cryptopals.com/

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 36 / 36

