An introduction to python
mcnet computing school 2016

Chris Pollard

University of Glasgow, MCNet

2016 05 16

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 1/36

Outline

» Intro

v

Design choices

v

Syntax

v

Built-in types

Libraries

v

v

Intro to NumPy

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 2 /36

Intro

Python

@ python’

v

Python is a general purpose programming language (python.org)

v

Development begun in 1989 by Guido van Rossum
Available on many, many platforms (usually standard on UNIX)
Latest versions: 2.7.11, 3.5.1

Several implementations (usually CPython, but others for JVM,
self-hosted, etc)

v

v

v

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 3 /36

http://python.org

Why python?

» General purpose, high-level
» Code readability is a basic design ideal

» Supports many programming paradigms (object-oriented, imperative,
functional, procedural, etc.)

v

Widely supported with free + open reference implementation

v

Large standard library and many third party libraries available

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 4 /36

Why python?

T DUNNO. - 7
DYNAMIC TYPING? I JUsT TYPED
WHITEGPRCE? import ankigruty
/ corE Towest | | THATS ITE
T LEARNED ITLAST PROGRAMIING ... I ALSO SAMPLED
NIGHT! EVERYTHING 1S FUN AGAIN! EVERYTHING IN THE
15 SO SIMPLE! ITS A LHOLE VEDICINE (ABINET
! NEW WORLD FOR COMPARISON.
HELLO WORLD 15 JUST N UP HERE! I
print "Hello, worldl" BUT HOW ARE BUT T THINK THIS
YOU RYING? 15 THE PYTHON.

It has a reputation for being beginner-friendly and fun to learn

Chris Pollard (Glasgow, MCNet)

python@

2016 05 16

5/ 36

Why not python?

So why wouldn't you use python for a project?

> Interpreted: if we never attempt to run a piece of code, then we don’t
know if it works.

» No compile-time errors (no type checking!)

» Speed

» More from the room?

There are ways to deal with each of these drawbacks, of course!

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 6 /36

Zen of python

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Readability counts.

Errors should never pass silently.

There should be one— and preferably only one —obvious way to do it.

If the implementation is hard to explain, it's a bad idea.

— Tim Peters

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 7 /36

Which version should | use?

Personal recommendations:
» if you know you will run into compatibility issues (from e.g.
collaboration), pick the version that won't cause technical problems.

» use the system installed version (unless there is no system version or
it's very out-of-date, and you need newer features).

> use the latest version of python 3. most libraries now work with
version 3.

» otherwise get the latest version of 2.7.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 8 /36

Before we dive in

From now on, fixed width code should be valid python.

If a line starts with “>>>", you can try it in python's REPL: just type
“python” at you terminal (or install and run “ipython”).

Most language keywords should be highlighted in blue.

The help() function is your friend!

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 9 /36

Basic syntax

Python's syntax is quite similar to C/C++.

the nth fibonacci number
def fib(n):
if n < 2:
return n
else:

return fib(n-1) + fib(n-2)

Notes:

» “def” starts a function definition.

> '’ starts a comment.

» indentation matters (tabs not recommended).
> no semicolons

» no braces

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 10 / 36

Control flows: for

sum of first n fibonacci numbers
def fib_sum(n):
s =0
list of numbers from 0 to n.
for i in range(n+1):
s += fib (i)

return s

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 11 /36

Control flows: break, continue

does something useless
def useless(n, m):

s =0
for i in range(n, m):
if i < 3:
continue
elif i > 27:
break
else:
s += i
return s

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 12 / 36

booleans

We can make things very clear even without comments:

def makeMeHappy(x, y, z):
return isGood(x) \
and not isBad(y) \
and not isUgly(z):

Remember: “True” and “False” are capitalized in python.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 13 / 36

import

Imports are simple:

import the math library
import math
print (math.sqrt (10))

or

from math import sqrt
print (sqrt (10))

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 14 / 36

import

We can also import the math library with a new namespace name:

import the math library
import math as m

print(m.sqrt(10))

This, however is highly discouraged due namespace clashes and difficulty
in understanding what code is doing:

from math import =«
print(sqrt (10))

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 15 / 36

But | need my braces

No.

>>> from __future__ import braces
File "<stdin>", line 1
SyntaxError: not a chance

One of many easter eggs in CPython. ..

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 16 / 36

Built-in types

Commonly used types

There are a bunch of handy, commonly-used types included in the
standard library:

> Lists

» Tuples

» Strings

\4

Dictionaries (maps)
> Sets

» and more.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 17 / 36

Lists and tuples

Main difference: lists are mutable; tuples are not.

>>> a = [1, 2, 3] # a list
>>> a[l] = 4

>>> a

[1, 4, 3]

>>> b = (1, 2, 3) # a tuple
>>> b[1l] = 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support \
item assignment

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 18 / 36

Built-in types

Aside on mutability

Mutable objects (e.g. lists) have some important gotchas: for instance, in
python they are always passed by reference, so we can easily (and
accidentally) write code that does unexpected things.

>>> a = [1, 2, 3] # a list
>>> b = a

>>> b[1] = 4

>>> a

[1, 4, 3]

this will change the second item in x to 5
if x is mutable and fail otherwise!
def oops(x):

x[1] =5

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 19 / 36

Built-in types

Strings

>>> a = "hello!"

>>> al[l]

’e!

this works but is slow——don 't do in a loop!
>>> a += ' world!’

>>> a

"hello! world!’

triple quotes: verbatim string
b =\

"""roses are red.

violets are blue.

Thankfully I ran out of space.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 20 / 36

String formatting

There are several ways to format strings; this is the preferred one:

>>> a = "hello {firstname} {lastname}!"
>>> a.format(firstname="Rick", lastname="Feyn")
"hello Rick Feyn!’

The preferred way to concatenate many strings is like so:

"7 .join(mystrings)

join them with underscores
7 .join(mystrings)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 21 /36

Dictionaries

Dictionaries are worth getting the hang of: they're very fast, heterogenous,
mutable lookup tables.

>>> a = {"fact" : "Elvis lives",
"fiction" : "Burger king kills"}

>>> a["fact"]

"Elvis lives’

>>> a["fiction"] = "for real"”

>>> al[42] = "life"

>>> a

{42: ’life’, ’'fact’: ’Elvis lives’,
"fiction’: ’for real’}

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 22 / 36

Type system

typing is strong
>>> "hello" + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate ’'str’ and \
int’ objects

typing is dynamic
>>> a = 2
>>> a = "hello"

we only check if x and y can be added

when the + operator is called at runtime.
def addF(x, y):
return x + y

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 23 /36

The python standard library

...1is, in short, huge.

>

>

>

Regular expressions (re), text handling

datetime, calendar

numerical tools: math, decimal, fractions, random
system calls, shell commands (os, sys, shutil, etc.)
threads and multiprocessing

pickle, sqlite3, zlib, bz2, tarfile, csv

markup (xml, html), networking, graphics

etc.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 24 / 36

Third party packages

In addition to an extensive standard library, python has a very useful set of
third party packages and distribution systems to handle them (e.g. pypi).

» Numerical python (numpy, scipy, matplotlib)
Graphics (OpenGL)
» Computer vision (OpenCV)

v

» Database interfaces
» Web servers

> etc, etc, etc

Most packages can be easily installed with the pip command, however be
careful: quality and maintenance can be a problem for pypi packages.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 25 / 36

https://pypi.python.org/pypi

NumPy

» The NumPy/SciPy/matplotlib suite of external packages is worth
familiarizing yourself with.

> It can improve the performance of your python code a /ot by doing
the heavy numerical calculations in compiled code. ..

> ...while providing a nice python API.

I'm going to go over some of the basic features and syntax based on the
tutorial here.

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 26 / 36

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

NumPy arrays

The primary object added by NumPy is a homogenous, multidimensional
array:

>

>

>

table of elements all of the same type
indexed by tuple of positive integers

called “ndarray” or “array” (don't confuse NumPy arrays with
python's built-in array.array object.)

useful member variables: ndim, shape, size, dtype (use help() for
more info!)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 27 / 36

example

>>> import numpy as np

>>> a = np.arange(l5).reshape(3, 5)

>>> a

array([[©®, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[16, 11, 12, 13, 14]11)

>>> a.shape

(3, 5

>>> a.ndim

2

>>> a.dtype.name

int64’

>>> a.size

15

>>> type(a)

<type ’'numpy.ndarray’>
Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 28 / 36

array creation

>>> np.zeros((3,4))
array([[0., 0., 0., ©0.],
[6., 6., 0., 0.7,
[0., 0., 0., 0.11)
dtype can also be specified
>>> np.ones((2,3,4), dtype=np.intl6)

array ([[[1, 1, 1, 17,
(1, 1, 1, 17,
ri1, 1, 1, 111,
(o 1, 1, 1, 11,
ri1, 1, 1, 17,
[1, 1, 1, 1111, dtype=intl6)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 29 / 36

array operations

Arithmetic functions are applied elementwise!

>>> a = np.array([20,30,40,50])

>>> b = np.arange(4)

>>> b

array ([0, 1, 2, 31)

>>> c = a-b

>>> C

array ([20, 29, 38, 47]1)

>>> bxx2

array ([0, 1, 4, 9])

>>> 10xnp.sin(a)

array ([9.12945251, -9.88031624, 7.4511316 , -2.
>>> a<35

array ([True, True, False, False], dtype=bool)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 30/ 36

more array operations

“4=" and similar operators can be very efficient: operations are
performed in place.

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *x= 3
>>> a
array([[3, 3, 31,
(3, 3, 311D
>>> b += a
>>> b
array ([[3.417022 , 3.72032449, 3.00011437],

[3.30233257, 3.14675589, 3.09233859]1])

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 31/36

array folds

Additionally, a many common helper functions for folding over an array
already exist:

>>> a = np.random.random((2,3))

>>> a

array ([[0.18626021, 0.34556073, 0.39676747],
[0.53881673, ©.41919451, 0.6852195 11)

>>> a.sum()

2.5718191614547998

>>> a.min()

0.1862602113776709

>>> a.max()

0.6852195003967595

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 32 /36

array slices

Remember: arrays are mutable. We can access items and set in an array
similarly to how we do for list, but with a richer syntax.

>>> a = np.arange (5)*%3

>>> a

array ([0, 1, 8, 27, 64])

>>> al2]

8

>>> al2:]

array ([8, 27, 64])

>>> al[0:4:2] = —1000

>>> a

array([-1000, 1, —1000, 27, 64])

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 33 /36

multidimensional array slices

The array slicing syntax scales well into multidimensional arrays:

>>> b

array([[6, 1, 2, 317,
(16, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 4311)

>>> b[2,3]

23

each row in the second column of b

>>> b[0:5, 1]

array([1, 11, 21, 31, 411)

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 34 /36

but wait: there's more!

| highly recommend having a look at the NumPy/SciPy documentation to
see what is available “for free” from these libraries: there is a lot!

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 35/ 36

Summary

That was a very quick intro to python and NumPy/SciPy.

There were many, many things not covered here (syntactic sugar,
exceptions, classes and inheritance, advanced keywords, decorations, etc.)

The best way to learn it is to use it!

http://learnpythonthehardway.org/book/
http://projecteuler.net/
https://cryptopals.com/

Chris Pollard (Glasgow, MCNet) python@mcnet 2016 05 16 36 / 36

