
Compiling, linking, and
language-mixing

Andy Buckley
University of Glasgow

MCnet Computing School, Mariaspring, 19 May 2016

1/8



Preprocessing, compilation, and linking
Building C, C++, Fortran, etc. is split into several stages:

I Preprocessing: dumb text concatenation and
replacement. Optional extension for Fortran. Pass -E
to gcc to stop build at this point. cpp command,
CPPFLAGS env vars

I Compiling: convert high-level language into
CPU-specific instruction set (assembly language). Pass
-S to stop. CFLAGS, FFLAGS, CXXFLAGS env vars

I Assembly: convert assembly code to binary. Pass -c.
Access object file content with nm

I Linking: put together binary object files with startup
code and libraries. Knows nothing about code,
argument lists, etc.

I For small programs usually run all steps from one
gcc/g++/gfortran command

2/8



Object files and libraries
I EXERCISE: build cdemo.c, ccdemo.cc, fdemo.f90

→*demo.o and view contents with nm
I The symbols’ binary contents are independent of

language, but their names are not
“Name mangling”: C = no-mangling, Fortran
unstandardised without effort, C++ unstandardised
But if we are careful, we can make languages talk to
each other. . .

I To build a static library of combined object files, use ar:
ar -rcs libmy.a *demo.o

I To build a shared/dynamic library of combined object
files, use gcc:
gcc -shared -o libmy.so *demo.o

I Try objdump -p, readelf -a to inspect the resulting
object/lib files. Note -C option or explicit c++filt for
decoding of C++ name mangling.

3/8



Static and dynamic linking

I Linking: g++ foo.cc -o foo /prefix/lib/libmy.so

or g++ foo.cc -o foo -L/prefix/lib -lmy

I Static libs are just big object files with a global symbol
table

I Linking an executable against a static lib pulls all
symbols into the executable

Can be convenient, fast, portable, no path issues – but
very large executables and dependency/relink
nightmares
Lib/object file order on linker command line matters
(argh)

4/8



Static and dynamic linking

I Linking: g++ foo.cc -o foo /prefix/lib/libmy.so

or g++ foo.cc -o foo -L/prefix/lib -lmy

I Shared libs are cleverer, do dynamic lookup: more
metadata, use ld at runtime ⇒(DY)LD LIBRARY PATH

Keeps executables small, automatic dependency
resolution as long as no API/ABI change
Standard for system applications, and more modern
physics code
Runtime sensitivity: ldd can be used to work out
current environment’s path resolution for an
executable or shared lib

4/8



Calling Fortran from C(++)
I Use extern "C" blocks to get C non-mangling
I Forward-declare Fortran functions as symbols with

case and trailing underscore(s) mangling
I Use! But several mapping details to be careful about:

Args and returns: passed as pointers, cannot be literals;
subroutines return into args
Type matching and symbol manglings are not
standard, may be compiler dependent;
F2003 adds better compatibility mechanisms
Some features/types may not map well: use shim
functions in either lang to provide a clean interface
String args are fiddly: try to avoid! (in Fortran: no
null-termination, secret non-std extra arg for lengths)
Note that array indexing is inverted, so Fortran
INTEGER(1,2,3) → C(++) int[3][2][1]
Remember to explicitly link in the other std library:
-lstdc++ or -lgfortran 5/8



Calling C(++) from Fortran

I You can’t call all C++ features from Fortran – classes
have no direct equivalent, for example

I But you can call C-linkage C++ functions which
internally use objects

I Shim functions can be written in either C++ or Fortran
I Much easier to map C++ functions into Fortran

subroutines than into Fortran functions
I Otherwise it’s just the same as Fortran from C(++)

I In both directions, keep it as simple as possible:
this stuff needs to be functional, not beautiful

6/8



Calling C from Python: ctypes

I Easiest, but not “native”: ctypes module
I EXAMPLE:

import ctypes

demo = ctypes.CDLL("libdemo.so")

demo.fib(5)

I For floating point types, need to specify argument and
return types by hand:
demo.dbldbl(4.0) # error!!

demo.dbldbl.argtypes = [ctypes.c double]

demo.dbldbl.restype = ctypes.c double

demo.dbldbl.argtypes(4.0) # 8.0

I Calling C++ or Fortran requires knowing the symbol
mangling

7/8



Calling C(++) from Python: Cython
I Cython can also be used to access C(++) code – classes

and functions – from Python
Originally developed (as Pyrex) as a typed Python-like
language: also useful for optimisation, after
comprehensions and numpy
Can be used to make “native-looking” Python C
extensions: docstrings, auto-completion, customised to
be Pythonic if wanted

I EXAMPLE: see cydemo.pyx and cydemo.pxd

cython --cplus cydemo.pyx

g++ -c -fPIC cydemo.cpp

gcc -shared -o cydemo.so cydemo.o libdemo.so
I Nicely integrated (less manual) builds via Python

distutils – see the excellent docs
I See also SWIG for simpler, but more automated

mapping (and other scripting languages)
8/8

http://www.cython.org

