



# Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at 8 TeV with the ATLAS detector

Phys. Rev. D 94, 032006 (2016)

Roger Naranjo on behalf of the ATLAS Collaboration



#### Introduction

- Effect comes from interferences between NLO processes.
- Top is preferentially emitted in the direction of the incoming quark.



#### At the LHC:

- antiquark → sea quark
- quark → valence quark

Different Momenta between Top/Antitop



#### The observables:

Top based asymmetry:

$$\Delta|y|=|y_{top}|-|y_{antitop}|$$
  $A_c=rac{N(\Delta|y|>0)-N(\Delta|y|<0)}{N(\Delta|y|<0)+N(\Delta|y|<0)}$  on based asymmetry:  $N(\Delta|y|>0)-N(\Delta|y|<0)$ 

Lepton based asymmetry:

$$\Delta |\eta| = |\eta_{+}^{\ell}| - |\eta_{-}^{\ell}| \qquad A_{c}^{lep} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| < 0) + N(\Delta|\eta| > 0)}$$



# **Analysis Strategy**





Differential measurements are perfomed as a function of the boost ( $\beta_{\rm z}^{t\bar t}$ ), mass ( $m_{t\bar t}$ ) and transverse momentum ( $p_{\rm T}^{t\bar t}$ ) of the top pair system:

Enhance the asymmetry value

→ Discriminant for different BSM models



(Inclusive and differential)



#### Selection

#### Selection

- Channels ee/eμ/μμ are considered
- 2 leptons with opposite charge
- At least 2 jets
- ee/μμ: Z-veto, MET > 30 GeV
- eµ: Ht > 130 GeV
- B-tagging in ee and μμ



#### • The background contributions

- Diboson: Alpgen + Herwig
- Drell-Yan: Alpgen + Pythia + data driven SF
- Single Top Wt channel: Powheg+Pythia
- Mis-identified leptons (fakes): Monte Carlo + data driven SF





- Top quark's kinematics has to be reconstructed in order to compute the charge asymmetry.
- Under-constrained system: 2 neutrinos MET
- KIN Method is used to solve the system
  - System of equations is solved numerically assuming top and W mass





HELMHOLTZ



# Unfolding

- Using Fully Bayesian Unfolding (FBU)
  - Based on Bayes Theorem
- $\rho(\mathbf{T}|\mathbf{D}) \propto \mathcal{L}(\mathbf{D}|\mathbf{T}) \cdot \pi(\mathbf{T})$ 
  - The unfolded asymmetry value is obtained from the posterior probability density for all the scanned "Truth" distributions.
  - Marginalization procedure is used for systematics computation.
  - Combination of the 3 channels is done within the method.







# N S Jay 1972 VIERS I TAY

#### Leptonic Asymmetry

|                     |                        |                 |          |         |               | Absolute uncer        | tainties in $A_{\rm C}^{\ell\ell}$ |          |         |                 |       |
|---------------------|------------------------|-----------------|----------|---------|---------------|-----------------------|------------------------------------|----------|---------|-----------------|-------|
|                     |                        | Fiducial volume |          |         |               | Full phase space      |                                    |          |         |                 |       |
|                     |                        | Statistics      | Detector | Bkg     | Signal modeli | ng Other              | Statistics                         | Detector | Bkg     | Signal modeling | Other |
|                     | Inclusive              | 0.005           | 0.001    | 0.001   | 0.002         | 0.001                 | 0.005                              | 0.001    | 0.001   | 0.004           | 0.001 |
| m -                 | $0-500~{\rm GeV}$      | 0.008           | 0.002    | 0.001   | 0.005         | 0.005                 | 0.008                              | 0.002    | 0.001   | 0.005           | 0.006 |
| $m_{tar{t}}$        | $5002000~\mathrm{GeV}$ | 0.012           | 0.004    | < 0.001 | 0.013         | $/$ 0.005 $\setminus$ | 0.011                              | 0.004    | < 0.001 | 0.014           | 0.005 |
| $eta_{tar{t}}$      | 0-0.6                  | 0.007           | 0.003    | < 0.001 | 0.004         | 0.004                 | 0.007                              | 0.002    | < 0.001 | 0.005           | 0.005 |
| utt                 | 0.6 – 1.0              | 0.010           | 0.005    | 0.001   | 0.005         | 0.004                 | 0.010                              | 0.003    | 0.001   | 0.006           | 0.004 |
| $p_{ m T}^{tar{t}}$ | $030~\mathrm{GeV}$     | 0.015           | 0.009    | 0.001   | 0.015         | 0.006                 | 0.015                              | 0.010    | 0.001   | 0.017           | 0.007 |
| $p_{\mathrm{T}}$    | $301000~\mathrm{GeV}$  | 0.011           | 0.004    | 0.001   | 0.012         | 0.005                 | 0.010                              | 0.004    | 0.001   | 0.013           | 0.006 |

# Dominant uncertainties are Signal Modeling and the Kinematic Reconstruction

#### Top Asymmetry

|                     |                        |                 |          |         | Abs             | solute uncertaint | ies in $A_{\mathrm{C}}^{tar{t}}$ |          |         |                 |       |
|---------------------|------------------------|-----------------|----------|---------|-----------------|-------------------|----------------------------------|----------|---------|-----------------|-------|
|                     |                        | Fiducial volume |          |         |                 |                   | Full phase space                 |          |         |                 |       |
|                     |                        | Statistics      | Detector | Bkg     | Signal modeling | ng Other          | Statistics                       | Detector | Bkg     | Signal modeling | Other |
|                     | Inclusive              | 0.013           | 0.008    | < 0.001 | 0.007           | 0.007             | 0.011                            | 0.006    | < 0.001 | 0.008           | 0.006 |
| 200 -               | $0-500~{\rm GeV}$      | 0.030           | 0.024    | 0.001   | 0.016           | 0.021             | 0.028                            | 0.021    | 0.002   | 0.018           | 0.020 |
| $m_{tar{t}}$        | $5002000~\mathrm{GeV}$ | 0.018           | 0.007    | < 0.001 | 0.015           | 0.009             | 0.015                            | 0.006    | < 0.001 | 0.016           | 0.008 |
| β_                  | 0-0.6                  | 0.023           | 0.021    | 0.002   | 0.014           | 0.018             | 0.023                            | 0.019    | 0.002   | 0.015           | 0.017 |
| $eta_{tar{t}}$      | 0.6 – 1.0              | 0.021           | 0.009    | 0.001   | 0.013           | 0.011             | 0.018                            | 0.009    | 0.001   | 0.013           | 0.010 |
| $p_{ m T}^{tar{t}}$ | 0–30 GeV               | 0.035           | 0.019    | 0.003   | 0.018           | 0.020             | 0.031                            | 0.015    | 0.004   | 0.019           | 0.017 |
|                     | $301000~\mathrm{GeV}$  | 0.027           | 0.015    | 0.003   | 0.018           | 0.017             | 0.025                            | 0.013    | 0.003   | 0.014           | 0.015 |

Reduction of the modeling uncertainties in the fiducial region



#### Results





Results are compatible with SM predictions

Similar behaviour in the fiducial region



#### Results



Unfolded distributions are compatible with the distribution provided by POWHEG-hvq



#### Results

The leptonic and top asymmetry measurement can be compared to different BSM models

Correlations between the measurements is about of 49%

The measurements are statistically limited





# Summary

- Inclusive and differential measurements of the charge asymmetry at 8 TeV in the dilepton channel were presented.
- For the top pair reconstruction the KIN method is used.
- The Fully Bayesian Unfolding (FBU) is applied as unfolding procedure.
  - Systematic uncertainties are evaluated within the method using marginalization.
  - Unfolding back to:
    - Parton Level
    - Particle level



- Results are compatible with SM predictions
- Increased the precision by factor of ~2 with respect to the 7 TeV results
- More statistics will further constrain the different BSM model



#### Backup



## **Yields**

| Channel                               | ee                        | $\mu\mu$           | $e\mu$                  |
|---------------------------------------|---------------------------|--------------------|-------------------------|
| $\overline{tar{t}}$                   | $10200 \pm 800$           | $12100 \pm 800$    | $36000 \pm 2400$        |
| Single-top                            | $510 \pm 50$              | $590 \pm 50$       | $1980 \pm 170$          |
| Diboson                               | $31 \pm 5$                | $40 \pm 6$         | $1320 \pm 100$          |
| $Z \to ee \; (\mathrm{DD})$           | $1200 \pm 260$            | _                  | _                       |
| $Z \to \mu \mu \; (\mathrm{DD})$      | _                         | $1520\pm300$       | _                       |
| $Z \to \tau \tau \; (\mathrm{DD/MC})$ | $31 \pm 15$               | $58 \pm 25$        | $1120 \pm 430$          |
| NP & fake leptons (DD)                | $62  {}^{+119}_{-29}$     | $45  ^{+36}_{-24}$ | $480  {}^{+240}_{-220}$ |
| Total Expected                        | $12010  {}^{+860}_{-850}$ | $14350\pm830$      | $40900 \pm 2450$        |
| Data                                  | 12785                     | 14453              | 42363                   |

# Results for the fiducial region ASSOCIATION ASSOCIATION





Results are compatible with SM predictions



# **Used Binning**

|                          |              | $\Delta  \eta $                               | $\Delta  y $     |
|--------------------------|--------------|-----------------------------------------------|------------------|
|                          | Inclusive    | [0.0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.7, 1.9, 5.0] | [0.0, 0.75, 5.0] |
| m -                      | 0-500 GeV    | [0.0, 0.8, 5.0]                               | [0.0, 0.6, 5.0]  |
| $m_{t\bar{t}}$           | 500–2000 GeV | [0.0, 1.4, 5.0]                               | [0.0, 1.2, 5.0]  |
| R -                      | 0-0.6        | [0.0, 0.8, 5.0]                               | [0.0, 0.5, 5.0]  |
| $\mid eta_{tar{t}} \mid$ | 0.6-1.0      | [0.0, 1.2, 5.0]                               | [0.0, 0.9, 5.0]  |
| $p_T^{tar{t}}$           | 0–30 GeV     | [0.0, 0.7, 5.0]                               | [0.0, 0.8, 5.0]  |
| $P_T$                    | 30-1000 GeV  | [0.0, 0.7, 5.0]                               | [0.0, 0.8, 5.0]  |



# **Binning Correlation**

#### **Top Asymmetry**



#### Leptonic Asymmetry





## Response Matrices





