Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV

Dustin Biedermann

Humboldt-Universität zu Berlin

Top 2016 Olomouc, 20th September 2016

Vector-like Quarks

Vector-like Quarks (VLQ) predicted by several BSM models (little Higgs, composite Higgs, ...) addressing Hierarchy problem, tension in A_{FB}^{b} , ...

Appear in different SU(2) multiplets:

- Singlets: T, B
- Doublets: (XT), (TB), (BY)
- Triplets: (XTB), (TBY)

Pair production: mass constraints $(m(T/Y) \gtrsim 800 - 900 \text{ GeV})$

Single production: coupling constraints

Maximally allowed single production cross sections from electro-weak bounds Phys.Rev. D88.9 (2013) 094010

Analysis

Principal analysis idea

- Singly-produced VLQ $Y^{-\frac{4}{3}}$ and $T^{\frac{2}{3}}$ (2015 data, 3.2 fb⁻¹)
- Production: Weak t-channel bW fusion
- Decay process: $Y/T \rightarrow Wb$
- $BR(Y \rightarrow Wb) = 100\%$; T-singlet: $BR(T \rightarrow Wb) \approx 50\%$ at high masses

Measure/set limits on single production cross-section and couplings ($c_{L/R}$, $\sin \theta_{L,R}$) $c_{L/R}$: Matsedonskyi, Panico and Wulzer, JHEP 12 (2014) 097 $\sin \theta_{R/L}$: Aguilar-Saavedra et al., PRD 88.9 (2013) 094010

Analysis

Analysis Strategy

Results

Signal extraction with profile likelihood fit in m_{VLQ}

Good data/MC agreement in SR and in ttbar and W+jets CR (backup) Good data/MC agreement in other distributions too (backup)

No significant excess observed \Rightarrow limit setting

Results

Limit on cross section times branching ratio for Y and T

m(Y) < 1.44 TeV excluded at 95% CL for $\sqrt{c_L^2 + c_R^2} = 1/\sqrt{2}$

Results

Limits on couplings

Limits are close to electro-weak precision bounds for Y masses between 900 and 1100 GeV

(More coupling limits in backup slides)

Conclusion

Conclusion

Summay

- Search for singly produced Y/T VLQs using 3.2 fb⁻¹ ($\sqrt{s} = 13$ TeV)
- Observed limit for Y/T(m = 900 GeV): $\sigma < 0.33 \text{ pb}$
- Y mass exclusion for $\sqrt{c_L^2+c_R^2}=1/\sqrt{2}$: m(Y)<1.44 TeV
- $\sin \theta_R$ limits for (BY) doublet close to EW precision bounds
- Results are public: ATLAS-CONF-2016-072

More data is coming in fast \Rightarrow perhaps VLQs are discovered soon!

Thank you!

Couplings

Model-independent aproach (JHEP 12 (2014) 097)

$$L_{W} = \frac{g}{2} \left(c_{L} \overline{Q}_{L} \gamma_{\mu} W^{\mu} b_{L} + c_{R} \overline{Q}_{R} \gamma_{\mu} W^{\mu} b_{L} \right) + \dots$$
(1)

$$\Rightarrow \sigma_{\rm sing}(Q\bar{b}) = \left(c_L^2 + c_R^2\right) \sigma_{\rm Wb}(M) \tag{2}$$

$$\Rightarrow \sqrt{\frac{\sigma_{limit}}{\sigma_{theory}(\sqrt{c_L^2 + c_R^2} = 1)}} = \sqrt{c_L^2 + c_R^2}$$
(3)

Model-specific aproach (PRD 88.9 (2013) 094010)

$$L_{W} = \frac{g}{\sqrt{2}} \left(V_{Qb}^{L} \overline{Q}_{L} \gamma_{\mu} W^{\mu} b_{L} + V_{Qb}^{R} \overline{Q}_{R} \gamma_{\mu} W^{\mu} b_{L} \right) + \dots$$
(4)

The mixing V depends on the multiplett, e.g. for (BY) it is $V_{Yb}^{R/L} = -\sin\theta_{R/L}e^{i\phi}$ \Rightarrow possible to translate limit on $\sqrt{c_L^2 + c_R^2}$ to model specific mixing parameter sin $\theta_{R/L}$

Coupling determination in single production

Single production cross section is coupling dependent

Strong Pair production \Rightarrow mass constraints (less model-dependent) Electroweak Single production \Rightarrow coupling constraints (more model-dependent)

Models considered in this analysis:

- Matsedonskyi, Panico and Wulzer, JHEP 12 (2014) 097 'Model-independent' non-renormalizable Lagrangian w/o specific multiplet structure Couplings: c^{Wb}_{L/R}
- Aguilar-Saavreda et al., PRD 88.9 (2013) 094010 Renormalizable Lagrangian, multiplet realizations, also limits from EW precision obs. Couplings: $\sin \theta_{L/R}$ with $\sin \theta_L = f(\sin \theta_R)$

Translation: $c_{L/R}^{Wb} = \sqrt{2} \sin \theta_{L/R}$

Systematics

Considered Systematics

- JES/JER
- E_T^{miss}
- Electron / muon
- Lepton SF
- Flavour tagging
- $t\bar{t}$ generator, shower/hadronisation, ISR/FSR
- Single top generator, shower/hadronisation, ISR/FSR
- Luminosity uncertainty: 2.1%
- V+jets and Diboson cross section: 5%
- Single top cross section : 6.8%
- Top pair production cross section: +5.7% and -5.3%
- Fakes: 50% (flat)
- PDF systematics for W+jets and signals

Selection cuts

Preselection

- Exactly one e or mu (single lepton trigger)
- Number of j4 (p_T > 25 GeV): > 1, leading jet (lj): $|\eta| <$ 2.5
- $\bullet~$ Veto events with fwd jets (2.5 $<|\eta|<$ 4.5) of $p_T<$ 40 GeV
- $E_T^{\text{miss}} > 120 \text{ GeV}$

Y/T signal region	Wjets control region	ttbar control region
• lj: b-tagged • lj: $p_T > 350 \text{ GeV}$ • veto hard central jet (hj) $(p_T > 75 \text{ GeV})$ with $\Delta R(hj,lj) < 1.2 \text{ and}$ $\Delta R(hj,lj) > 2.7$ • $ \Delta \phi(\text{lep},lj) > 2.5$ • number of fwd. jet ≥ 1	 Same cuts as in SR except: Ij: not b-tagged Ij: p_T > 250 GeV 	 Same cuts as in SR except: Ij: p_T > 200 GeV Require at least one hj with ΔR(hj,lj) < 1.2 or ΔR(hj,lj) > 2.7

Cuts are optimized to obtain maximal S/\sqrt{B} for m(Y) = 900 GeV in SR

Signals in signal region

Assumed coupling for all three signals is $\sqrt{c_L^2+c_R^2}=1/\sqrt{2}$

Control regions - Data/MC - Pre-fit

Control regions - Data/MC - Post-fit

Limit on YbW coupling ('model independent')

Limit on YbW coupling in a BY-doublet model

8 TeV

13 TeV

Limit on TbW coupling (for a <u>T singlet</u>)

8 TeV

Kinematic variabels - I

Kinematic variabels - II

