Theory Summary of Top2016

Alexander Mitov

Cavendish Laboratory

Context

- The 2016 edition of Top20xy takes place in a markedly different environment:
 - The fantastic performance of the LHC is steadily moving the LHC physics program
 - From: detailed understanding of SM top quark
 - Towards: BSM implications.
- For the first time the Top20xy series of Workshop has significant emphasis on the interplay of top and BSM (think: "what if the 750 GeV di-photon excess was real?")
- The Workshop's idea is to facilitate work and discussions, thus helping address pressing problems in the description of (especially multi-TeV) top production, by:
 - SM theory and EXP provide answers regarding BSM,
 - BSM theory provides guidance about opportunities for EXP and SM theory:
 - The short-term, low-hanging fruit
 - The long-term end game for the LHC
- Overall there was a very good synergy!

The context in a single example: The 750 GeV resonance-that-wasn't and ttbar

- We all know the answer to this mystery: statistics!
- Still, many lessons can be illustrated with/taken from, this example:

What does it take to find a not-so-prominent bump (or signal) in tt events?

vs. "turbo" NNLO (i.e. normalized NNLO)

- How well do we know the SM tt predictions?
 - Higher-order QCD effects
 - PDFs
 - Top mass
 - EW effects
- BSM physics:
 - Motivation
 - Places to look
 - Possible signals to compute
- Both were fully covered at this conference and I'll discuss them in turn!

Czakon, Heymes, Mitov 1608.00765

Quantifying the SM

Inclusive stable top-production is in good shape

NNLO available for all 1-dim distributions (except P_{T,tt} which is NLO)

Is there a P_{T,top} discrepancy?

Czakon, Hartland, Mitov, Nocera, Rojo, to appear

It does not appear there is P_{T,top} discrepancy after the inclusion of NNLO

Theory summary Alexander Mitov Top2016, 23 Sep 2016

- Inclusive stable top-production is in good shape
 - NNLO available for all 1-dim distributions (except P_{T,tt} which is NLO)
 - Is there a P_{T,top} discrepancy?

Czakon, Hartland, Mitov, Nocera, Rojo, to appear

Absolute normalization

Normalized

- Similar conclusions from the ATLAS&CMS at 13 TeV will be very valuable and will help with MC development
- Most, not all, PDF's describe the data well

We have now reliable predictions up to multi-TeV scales

- Possible limitations?
 - Higher orders (i.e. resummation)
 - PDF
 - EW

Soft-gluon resummation at NLO+NNLL

Pecjak, Scott, Wang, Yang `15

 Very nice result; the large effect is likely due to choice of scale (M_{tt}-based scales do not converge well Talk by Michael Czakon)

Theory summary Alexander Mitov Top2016, 23 Sep 2016

Limitations on multi-TeV top-pair production: PDF

Talk by Michael Czakon

- The largest uncertainty (at present) for multi-TeV top production seems to be PDF uncertainty
- Can be reduced, in part, by refitting top data: use top/top-pair rapidity, not M₊.

Limitations on multi-TeV top-pair production: PDF

Luckily, one large potential PDF error went away (talks by Ioannis Tsinikos, Stefano Pozzorini)

NNPDF3.0QED vs LUXqed

Manohar, Nason, Salam, Zanderighi '16

- photon PDF impact → large in NNPDF3.0QED, negligible in LUXqed
- LUXqed \longleftrightarrow NNPDF3.0QED (no $\gamma(x, Q)$)
- LUXqed and NNPDF3.0QED in agreement within uncertainties
- The field appears to have unanimously accepted the smallness of the photon pdf

Related earlier work: Harland-Lang, Khoze, Ryskin, Martin

- Implications: tiny photon PDF error; large negative EW correction to ttbar at TeV scales
- Consistently merged NNLO QCD + NLO EW will be made public soon.

Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro, to appear

 Very important update on the top pole mass – MS-bar mass relation and contribution from renormalons.

Beneke, Marquard, Nason, Steinhauser arXiv:1605.03609 (uses the 4-loop result of):

Marquard, Smirnov, Smirnov, Steinhauser arXiv:1502.01030

- What's actually the issue?
- In the past it has been said that non-perturbative/renormalon corrections to mtop could be
 - O(1 GeV)
 - O(\(\Lambda_{OCD} \approx 300 \text{ MeV}\))
- Use of MS-bar (or other short-distance masses) has been proposed to "solve" the problem at the LHC and allow more precise mtop determination.
- But is this the case?
- The renormalon contribution is now estimated at 70 MeV. Absolutely negligible effect compared to the foreseeable error at the LHC. Error from MS-pole mass conversion 250 MeV.
- Conclusion?
 - One can use any mass one wants, but one should not expect added benefit from switching mass definitions! (at LHC; e+e- colliders are different story)
 - All LHC calculations are done in the pole scheme (and for a good reason!): the top decays and the ratio $\Gamma_{top}/m_{top} \approx 1\%$ tells us why our description of tops is so good!

Top quark mass

- Why precision in m_{top}?
 - EW precision fits; fate of the Universe ...

- ... it also starts to have some impact on LHC distributions:
- The issue is non-trivial because of the significant spread O(3 GeV) among current most precise m_{top} measurements.
- Much work in the past; here are some recent/current developments:

Top quark mass

- New methods and ideas about the extraction of m₊:
 - Comparing NNLO QCD with differential distributions measured by D0:

Talk by Reinhard Schwienhorst

- Interestingly, the error of the extracted mass is below the one of the total x-section.
- Promising approach, especially for the LHC

Top quark mass

- New methods and ideas about the extraction of m_t:
 - Update for the b-energy peak method:

Agashe, Franceschini, Kim, Schulze arXiv:1603.03445

- Computed with QCD corrections to top decay. Important correction; radiation modifies the results.
- The main attraction of this, and similar to it, methods is that they decouple top productions from top decay.
- m_{top} extraction is independent of BSM physics in top production
- Calibration of the Pythia8 top quark "MC" mass in terms of the top quark pole mass
 Talk by Moritz Preisser
 - Compare Pythia8 with resummed analytic results in e+e- →tt
 - Interesting result; lots of discussions!
 - Possible issues:
 - Absorbs perturbative & non-perturbative effects unrelated to m_{top} proper
 - Applicability to hadron colliders
 - Process independence and universality

Single Top

Talk by F. Tramontano

- Received much less theoretical attention in the past!
 - Playground for MC development
 - Studies of 4/5 flavor schemes
 - Known at NLO

- NNLO corrections derived only recently (NWA, t-channel, 5-flavor scheme)
 - Differential x-section (stable top)

Brucherseifer, Caola, Melnikov '14

Fully differential (production + decay)

Berger, Gao, C.-P. Yuan, Zhu '16

 s-channel and tW-channel known at NLO and available through HATHOR for single top

Kant et al arXiv:1406.4403

Approx. NNLO available from Kidonakis

Precision top production: realistic final states

- Talks by M. Worek and S. Pozzorini
 - tt+j at NLO fully off-shell
 - Tt at NLO QCD+EW fully off-shell

- These are some of the most complex calculations done to date!
- We are moving towards full automation and exceptional capability at NLO

NLO EW Tools	first results	
Recola+Collier	$pp \to \ell^+\ell^- jj$	[arXiv:1411.0916]
	$pp \to (t\bar{t}) \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$	[arXiv:1607.05571]
	$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu$	[arXiv:1605.03419]
	$pp \rightarrow e^+e^-\mu^+\mu^-$	[arXiv:1601.07787]
OpenLoops+ Munich/Sherpa	$pp o W+1,2,3\mathrm{jets}$	[arXiv:1412.5156]
	$pp o \ell\ell/\ell\nu/\nu\nu + 0, 1, 2 {\sf jets}$	[arXiv:1511.08692]
Madgraph5_aMC@NLO	$pp \to t\bar{t} + H/Z/W$	[arXiv:1504.03446]
	$pp o t \bar{t}$	[arXiv:1606.01915]
GoSam+ MadDipole	pp o W + 2 jets	[arXiv:1507.08579]

Benefits of automation

- NLO QCD+EW for multi-particle process, e.g. $pp o WWb\bar{b}$ and $t\bar{t}+$ multijets
- NLO QCD+EW matching and mering with parton showers (still work in progress)

Precision top production: realistic final states

- Talks by M. Worek and S. Pozzorini
 - These complete NLO calculations allow precise test of various common assumptions and approximations:
 - Effects beyond NWA are substantial in some kinematic regions

- A. Denner, S. Dittmaier, S. Kallweit,
- B. S. Pozzorini, M. Schulze '12

- Important applications:
 - endpoint m_{top} measurement is dominated by this effect!

Precision top production: realistic final states

- Talks by M. Worek and S. Pozzorini
 - Additional features:
 - Flexible dynamic scales calculations. Comparison with the NNLO findings?

Bevilacqua, Hartanto, Kraus, Worek, arXiv:1609.01659

- Flexible outputs: ntuples.
- Important impact on m_{top} for various measurements (endpoint & tt+jet)

Being inspired by BSM Physics

- What better inspiration than being told:
 - Top is truly special
 - Your work and expertise is very much needed!
 - Without your work important discoveries may not happen!

signal v. background

usually we try to separate new physics from the background

A. Weiler

signal v. background

Talk by A. Weiler

- Talk by Franceschini
 - LHC: 100 fb⁻¹ by end-next year
 - New Higgs and EW states are a priority
 - Challenges:
 - Compressed spectra (i.e. little energy released above SM) e.g. stop chimneys
 - Dilution: there could be many decay channels and the decay rate is diluted each one of them small – and so hard to see!
 - Messages:
 - We can look for straightforward deviations (bumps) but it may become harder.
 - More and more favored approach: look for BSM that hides in SM.
 - Not just top production but also top decay can contain new physics.

- Talk by M. McCullough Top and Naturalness
 - The naturalness idea connects Top+Higgs and so, naturally, leads to top partners.
 - Light stop is a major example
 - But it may be much more complicated: at LHC scales the top connection may not be apparent!
- Talk by Y. Kats BSM hiding in top (and applications of idea of Naturalness)
 - pp→ tT +2 jets is a fairly generic signature (whatever the model)!
- Talk by Matthew Buckley DM and top
 - top could naturally be connected to DM so signatures like pp-> tt+E_{T,mis} are generic and well motivated.
- Talk by Reuven Balkin models with composite DM are well motivated.

- Talk by J. Quevillon generic scalars and top at LHC
 - Many things can happen, obviously; it is possible to even have effects that do not affect total rates (due to interferences)!
 - $H,A \rightarrow top$ is enhanced within MSSM by latest searches
 - Interferences: can be super important.

- Talk by Vignaroli
 - yet another example "why top is special"
- It all naturally looks like tt signal!

Computing BSM effects is not a problem!

- We need to be doing good BSM+SM Calculations (a message from J. Quevillon's talk).
 - How to do that? EFT context

talks by Eleni Vryonidou & Gauthier Durieux

Vryonidou: SMEFT@NLO

Franzosi, Zhang 1503.08841 Bylund, Maltoni, Tsinikos, Vryonidou, Zhang 1601.08193 Maltoni, Vryonidou, Zhang 1607.05330

- Extend SM (preferably at NLO) with a set of EFT operators
- new operators can bring steady rise in distributions (not just bumps)

- top-quark FCNCs: first global EFT analysis at NLO in QCD presented by Durieux
- Alternative frameworks: TopFitter

Durieux, Maltoni, Zhang '14

A. Buckley et al: 1506.08845 and 1512.03360

Conclusions

- Many developments in tt theory
 - Precision
 - Usability
 - Flexibility
- Improvements are happening at a constant pace; this allows cross-checks and validation with experiment
- Some highlights:
 - NNLO in single top
 - Top P_T discrepancy still present in MC's but resolved at NNLO?
 - Ongoing work in m_{top} extractions. But can we expect great improvements any time soon?
- What to expect?
 - NNLO top pair with NNLO decays (in NWA) (hopefully soon)
 - More differential top NNLO results;
 - Flexible formats
- Where else can we benefit?
 - Talk more to BSM colleagues!
 - There is tremendous TOP expertise around! It should be used in searches
 - Searches can provide insight into places to search and compute.
 - Evidently this will be a process; we'll look for ways to channel it and we need to keep open minds!