Higher order QCD Corrections for the tT cross section

M. Czakon

TOP2016, Olomouc, Czech Republic, 19-23 September 2016

What happened since the last episode

Off-shell effects at NLO in QCD

- $tT+jet \rightarrow talk by M. Worek$
- tT+Higgs

Off-shell effects at NLO in EW → *talk by S. Pozzorini*

tT + 3 jets at NLO in QCD → *talk by S. Pozzorini*

Parton shower matching with improved resonance treatment

Single-top at NNLO in QCD in the NWA → *talk by F. Tramontano*

Four-loop relation between the MS and on-shell mass definitions EW corrections at NLO with photon PDF contributions -> talk by I. Tsinikos Boosted-top resummation NNLO differential distributions with dynamical scales

Total Cross Sections

Differential Cross Sections

Perturbation Theory Convergence

Concurrent uncertainties:

Scales	~ 3%
pdf (at 68%cl)	~ 2-3 %
$\alpha_{\rm S}$ (parametric)	~ 1.5%
m _{top} (parametric)	~ 3%

Soft gluon resummation makes a difference: $5\% \rightarrow 3\%$

MC, Fiedler, Mitov `13

Perturbation Theory Convergence

- It has been argued that it is better to use the MS mass to improve convergence
- Is there a better scale in the on-shell scheme?
- Relevant for differential Monte Carlo description

Alekhin, Blümlein, Moch `13

Ambiguity of the Pole Mass

• Pole mass defined by an asymptotic series

- Renormalon ambiguity: the series is not Borel summable
- Ambiguity proportional to Λ_{OCD} , but with what coefficient ?
- Relation to MS mass up to 4-loops

 $m_P = 163.643 + 7.557 + 1.617 + 0.501 + (0.195 \pm 0.005) \,\text{GeV}$

Marquard, Smirnov, Smirnov, Steinhauser `15

Most recent estimate of the ambiguity

 $\delta^{(5+)}m_P = 0.250^{+0.015}_{-0.038} (N) \pm 0.001 (c_4) \pm 0.010 (\alpha_s) \pm 0.071 (\text{ambiguity}) \text{ GeV}$

Beneke, Marquard, Nason, Steinhauser arXiv:1605.03609

Boosted Top Resummation

- Soft-gluon resummation on top of top-quark fragmentation
- Transverse momentum distribution modified by dynamical scales and resummation
- At low p_T better description of CMS data, slightly worse for ATLAS (not shown)
- Larger scale dependence?

Pecjak, Scott, Wang, Yang '15

Boosted Top Resummation

- Observable dependent scale
- Results presented for 13 TeV as well
- At some point consistent matching to NNLO will become necessary
- When is true resummation needed?

Pecjak, Scott, Wang, Yang `15

9

Differential Distributions

Typical differential distributions are:

- 1. transverse momentum of the top-quark and the top-quark pair
- 2. rapidity of the top-quark and the top-quark pair
- 3. invariant mass of the top-quark pair

Difference between normalized and absolute distributions

Differential Distributions

Typical differential distributions are:

- 1. transverse momentum of the top-quark and the top-quark pair
- 2. rapidity of the top-quark and the top-quark pair
- 3. invariant mass of the top-quark pair

Difference between normalized and absolute distributions

MC, Heymes, Mitov `15

- Over extended kinematical ranges it is necessary to use dynamical scales
- Examples in the case of top-quark pair production:

- Our recommendation for p_T (but $\frac{1}{2}$)

$$\begin{split} \mu_{0} &\sim m_{t} ,\\ \mu_{0} &\sim m_{T} = \sqrt{m_{t}^{2} + p_{T}^{2}} ,\\ \mu_{0} &\sim H_{T} = \sqrt{m_{t}^{2} + p_{T,t}^{2}} + \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} ,\\ \mu_{0} &\sim H_{T} = \sqrt{m_{t}^{2} + p_{T,t}^{2}} + \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} + \sum_{i} p_{T,i} ,\\ \mu_{0} &\sim H_{T} = \sqrt{m_{t}^{2} + p_{T,t}^{2}} + \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} + \sum_{i} p_{T,i} ,\\ \mu_{0} &\sim E_{T} = \sqrt{\sqrt{m_{t}^{2} + p_{T,t}^{2}}} \sqrt{m_{t}^{2} + p_{T,\bar{t}}^{2}} ,\\ \mu_{0} &\sim H_{T,\text{int}} = \sqrt{(m_{t}/2)^{2} + p_{T,t}^{2}} + \sqrt{(m_{t}/2)^{2} + p_{T,\bar{t}}^{2}} ,\\ \mu_{0} &\sim m_{t\bar{t}} , \end{split}$$

- Dynamical scales modify the total cross section
- Because of threshold enhancement close results from an "average" fixed scale

• Some scales behave suspiciously, while seeming perfectly reasonable

MC, Heymes, Mitov `16

- A comparison of different scales at highest precision
- Different PDF sets

MC, Heymes, Mitov `16

• Improvements of convergence with "reasonable" scales

MC, Heymes, Mitov `16

- Improvements of convergence with "reasonable" scales
- Problems in the case of "less reasonable" scales

MC, Heymes, Mitov `16

Reliability of PDF Sets

- Above a certain invariant mass no more precise predictions
- Use the distributions to improve PDFs?

MC, Heymes, Mitov `16

Concluding Remarks

- High precision should be associated with fixed order perturbation theory:
 - Clear advantage: not many ambiguities
 - But: beware of range of applicability
 - Currently at next-to-next-to-leading order for on-shell production MC, Bärnreuther, Fiedler, Heymes, Mitov `12 - `16
 - Partial independent results by:

Abelof, Gehrmann-De Ridder, Maierhofer, Pozzorini `14 Catani, Grazzini, Torre `14 - `15

Currently substantial effort to include Narrow Width Approximation

Advertisment

Combination with electroweak corrections see talk by I. Tsinikos on Tuesday evening

Concluding Remarks

High precision should be associated with fixed order perturbation theory:

Preliminary: MC, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos, M. Zaro

Advertisment

Combination with electroweak corrections see talk by I. Tsinikos on Tuesday evening