Higher order QCD Corrections for the tT cross section

M. Czakon

TOP2016, Olomouc, Czech Republic, 19-23 September 2016

What happened since the last episode

Off-shell effects at NLO in QCD

- $tT+jet \rightarrow \text{talk by } M. \text{ } Work$
- tT+Higgs

Off-shell effects at NLO in $EW \rightarrow$ *talk by S. Pozzorini*

 $tT + 3$ jets at NLO in QCD \rightarrow *talk by S. Pozzorini*

Parton shower matching with improved resonance treatment

Single-top at NNLO in QCD in the NWA \rightarrow talk by F. Tramontano

Four-loop relation between the MS and on-shell mass definitions EW corrections at NLO with photon PDF contributions -> talk by I. Tsinikos Boosted-top resummation NNLO differential distributions with dynamical scales

Total Cross Sections

Differential Cross Sections

Perturbation Theory Convergence

NLL^{NNLL}

Fixed Order $NLO+res$ —

 $NNLO + res$ \longleftarrow

NLL^{NNLL}

LHC 8 TeV; $m_{top} = 173.3$ GeV; A=0
MSTW2008 LO; NLO; NNLO

LL

LO

240

220

200

180

160

140

120

 σ_{tot} [pb]

Concurrent uncertainties:

Soft gluon resummation makes a difference: $5\% \rightarrow 3\%$

MC, Fiedler, Mitov 13 ⁵

Perturbation Theory Convergence

- It has been argued that it is better to use the MS mass to improve convergence
- § Is there a better scale in the on-shell scheme?
- Relevant for differential Monte Carlo description

Alekhin, Blümlein, Moch `13

Ambiguity of the Pole Mass

• Pole mass defined by an asymptotic series

- **Renormalon ambiguity: the series is not Borel summable**
- Ambiguity proportional to Λ_{OCD} , but with what coefficient?
- Relation to MS mass up to 4-loops

 $m_P = 163.643 + 7.557 + 1.617 + 0.501 + (0.195 \pm 0.005)$ GeV

Marquard, Smirnov, Smirnov, Steinhauser `15

• Most recent estimate of the ambiguity

 $\delta^{(5+)}m_P = 0.250^{+0.015}_{-0.038}$ (N) ± 0.001 (c₄) ± 0.010 (α_s) ± 0.071 (ambiguity) GeV

Beneke, Marquard, Nason, Steinhauser arXiv:1605.03609 7

Boosted Top Resummation

- Soft-gluon resummation on top of top-quark fragmentation
- Transverse momentum distribution modified by dynamical scales and resummation
- At low p_T better description of CMS data, slightly worse for ATLAS (not shown)
- § Larger scale dependence?

Pecjak, Scott, Wang, Yang `15

8

Boosted Top Resummation

- Observable dependent scale
- § Results presented for 13 TeV as well
- At some point consistent matching to NNLO will become necessary
- When is true resummation needed?

Pecjak, Scott, Wang, Yang `15

9

Differential Distributions

Typical differential distributions are:

- transverse momentum of the top-quark and the top-quark pair
- 2. rapidity of the top-quark and the top-quark pair
- 3. invariant mass of the top-quark pair

Difference between normalized and absolute distributions

Differential Distributions

Typical differential distributions are:

- 1. transverse momentum of the top-quark and the top-quark pair
- 2. rapidity of the top-quark and the top-quark pair
- 3. invariant mass of the top-quark pair

Difference between normalized and absolute distributions

MC, Heymes, Mitov `15

- Over extended kinematical ranges it is necessary to use dynamical scales
- Examples in the case of top-quark pair production:

ur recommendation for p_T (but $\frac{1}{2}$)

 $\mu_0 \sim m_t$, Our recommendation for the others (but $\frac{1}{4}$) $\mu_0 \sim m_T = \sqrt{m_t^2 + p_T^2}$ $\mu_0 \sim H_T = \sqrt{m_t^2 + p_{T,t}^2 + \sqrt{m_t^2 + p_{T,\bar{t}}^2}}$ $\mu_0 \sim H_T' = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar t}^2} + \sum_i p_{T,i} \; ,$ $\mu_0 \sim E_T = \sqrt{\sqrt{m_t^2 + p_{T,t}^2} \sqrt{m_t^2 + p_{T,\bar{t}}^2}} \,,$ $\mu_0 \sim H_{T,\mathrm{int}} = \sqrt{(m_t/2)^2 + p_{T,t}^2} + \sqrt{(m_t/2)^2 + p_{T,\bar{t}}^2}$ $\mu_0 \sim m_{t\bar{t}}$,

- Dynamical scales modify the total cross section
- Because of threshold enhancement close results from an "average" fixed scale

• Some scales behave suspiciously, while seeming perfectly reasonable

MC, Heymes, Mitov `16

- A comparison of different scales at highest precision
- Different PDF sets

MC, Heymes, Mitov `16

• Improvements of convergence with "reasonable" scales

MC, Heymes, Mitov `16

- Improvements of convergence with "reasonable" scales
- Problems in the case of "less reasonable" scales

MC, Heymes, Mitov `16

Reliability of PDF Sets

- Above a certain invariant mass no more precise predictions
- Use the distributions to improve PDFs?

MC, Heymes, Mitov `16

Concluding Remarks

- High precision should be associated with fixed order perturbation theory:
	- \triangleright Clear advantage: not many ambiguities
	- \triangleright But: beware of range of applicability
	- Ø Currently at next-to-next-to-leading order for on-shell production *MC, Bärnreuther, Fiedler, Heymes, Mitov `12 - `16*
	- \triangleright Partial independent results by:

 Abelof, Gehrmann-De Ridder, Maierhofer, Pozzorini `14 Catani, Grazzini, Torre `14 - `15

 \triangleright Currently substantial effort to include Narrow Width Approximation

§ Advertisment

 \triangleright Combination with electroweak corrections see talk by I. Tsinikos on Tuesday evening 19

Concluding Remarks

High precision should be associated with fixed order perturbation theory:

Preliminary: MC, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos, M. Zaro

§ Advertisment

 \triangleright Combination with electroweak corrections see talk by I. Tsinikos on Tuesday evening