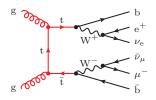
Electroweak corrections and off-shell effects in $t\bar{t}$ production and decay

Stefano Pozzorini

Zurich University

TOP2016 Olomouc, 19 September 2016



Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Motivation for high theoretical precision in $pp \rightarrow t\bar{t} \rightarrow WWb\bar{b}$

- precision PDF and m_t determinations
- small anomalies in top observables
- small signals with large top backgrounds

EW correction effects

- $\mathcal{O}\left(\alpha\right)$ corrections to on-shell $pp \to t\bar{t}$
- $\mathcal{O}\left(\frac{\Gamma_t}{m_t}\right) = \mathcal{O}\left(\alpha\right)$ effects from off-shell $pp \to WWb\bar{b}$

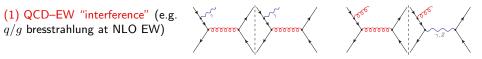
both effects mostly small ... but strongly enhanced in important kinematic regions

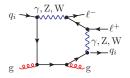
EW Sudakov logarithms at $Q \sim \text{TeV} \gg M_W$

Soft/collinear logarithms from *virtual* **EW bosons** [Bauer, Becher, Ciafaloni, Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, ...]

- Z, W^{\pm} bosons \sim light particles at $\hat{s} \gg M^2_{W,Z}$
- \Rightarrow large logarithms of IR type

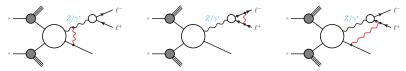
Universality and factorisation [Denner, S.P. '01]


$$\delta \mathcal{M}_{\mathrm{LL+NLL}}^{1-\mathrm{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{\hat{s}_{kl}}{M^{2}} + \gamma^{\mathrm{ew}}(k) \ln \frac{\hat{s}}{M^{2}} \right\} \mathcal{M}_{0}$$


• large negative terms $\propto \alpha_w \ln^2(Q^2/M_W^2) \sim 25\% \gg \alpha_S$ in any TeV scale observable

• size depends on external EW charges: not very large for $gg \rightarrow t\bar{t}$

\Rightarrow EW corrections important for SM tests and BSM searches at TeV scale


Nontrivial NLO EW features wrt NLO QCD (examples)

(2) Virtual EW corrections more involved than QCD ones (due to massive Z, W, H, b, t) and tend to dominate

(3) Leptons receive EW corrections and W, Z resonances require complex-mass scheme [Denner, Dittmaier]

(4) Protons and jets $\supset g, q, \gamma$ (IR safe photon-jet separation subtle)

First automated NLO QCD+EW tools and applications

NLO EW Tools	first results	
Recola+Collier	$pp ightarrow \ell^+ \ell^- jj$	[arXiv:1411.0916]
	$pp \to (t\bar{t}) \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$	[arXiv:1607.05571]
	$pp o e^+ u_e \mu^- \bar{ u}_\mu$	[arXiv:1605.03419]
	$pp ightarrow e^+ e^- \mu^+ \mu^-$	[arXiv:1601.07787]
OpenLoops+ Munich/Sherpa	$pp ightarrow W+1,2,3{ m jets}$	[arXiv:1412.5156]
	$pp ightarrow \ell \ell / \ell u / u u ightarrow + 0, 1, 2 { m jets}$	[arXiv:1511.08692]
Madgraph5_aMC@NLO	$pp ightarrow t\bar{t} + H/Z/W$	[arXiv:1504.03446]
	$pp ightarrow tar{t}$	[arXiv:1606.01915]
GoSam+ MadDipole	$pp ightarrow W + 2{ m jets}$	[arXiv:1507.08579]

Benefits of automation

- NLO QCD+EW for multi-particle process, e.g. $pp \rightarrow WWb\bar{b}$ and $t\bar{t}$ + multijets
- NLO QCD+EW matching and mering with parton showers (still work in progress)

1 $pp \to t\bar{t}$ at NLO EW

- 2 $pp \rightarrow WWb\bar{b}$ at NLO QCD+EW
- (3) Resonance aware NLO+PS matching for $pp \rightarrow W^+W^-b\bar{b}$

(4) $t\bar{t} + 3$ jets at NLO QCD

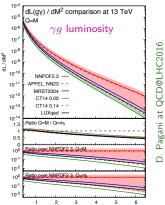
Literature

- weak [Beenakker et al. '94; Kühn et al. '06-'13; Bernreuther et al. '06; Campbell et al. '16]
- QED [Hollik, Kollar '08]
- A_{FB} [Hollik, Pagani '11; Kühn, Rodrigo '12; Manohar, Trott '12; Bernreuther, Si '12]
- NLO EW with decays in NWA [Bernreuther, Si '10]

NLO QCD+EW [Pagani, Tsinikos, Zaro, 1606.01915]

channel	LO QCD $\mathcal{O}(\alpha_S^2)$	NLO QCD $\mathcal{O}\left(\alpha_{S}^{3}\right)$	LO EW $\mathcal{O}(\alpha_S \alpha)$	NLO EW $\mathcal{O}\left(\alpha_{S}^{2}\boldsymbol{\alpha}\right)$	g ood t
$q\bar{q} \rightarrow t\bar{t}$	x	x		x	
$gg \to t\bar{t}$	х	х		x	t
$\gamma g ightarrow t ar{t}$			×	×	
$\gamma q \to t \bar{t}$				х	

In depth study of γ -induced contributions

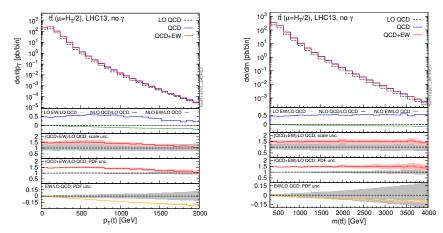

• dominated by $\gamma g \to t\bar{t}$ channel: included at $\mathcal{O}(\alpha_S \alpha)$ and $\mathcal{O}(\alpha_S^2 \alpha)$

Different $\gamma(x,Q^2)$ in PDF sets with LO QED evolution

PDF	initial condition	QED⊗QCD evol.	data	$\gamma_{\text{elastic}}(x)$
MRSTW2004QED	$P_{\gamma q} \otimes q_{\text{valence}}$	coupled	no	no
CT14QED	$P_{\gamma q} \otimes q_{\text{valence}}$	coupled	DIS $ep \to e\gamma + X$	(CT14QED_inc)
NNPDF2.3 QED	unconstrained	decoupled	DIS + DY@LHC	fit $\gamma_{\rm el+inel}(x)$
APFEL_NN23	idem	coupled	idem	idem
LUXqed	from data		$F_{2,L}(x,Q^2)$	yes

 $\gamma(x,Q^2)$ potentially relevant at very high x

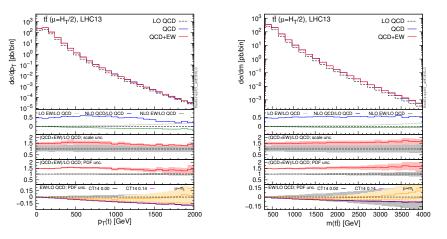
- NNPDFs: very large γ(x, Q²) and uncertainty
 ⇔ agnostic Ansatz and poor sensitivity of data
- other PDFs: consistently lower $\gamma(x,Q^2)$ and smaller uncertainty
- LUXqed [Manohar, Nason, Salam, Zanderighi '16]: very small uncertainties $\Leftrightarrow \gamma(x, Q^2)$ from proton structure functions (i.e. data)



NLO QCD+EW corrections without $\gamma(x, Q^2)$

Typical Sudakov behaviour but moderate size (see lowest frame)

-20% at $p_{T,\mathrm{top}} \sim 2 \,\mathrm{TeV}$

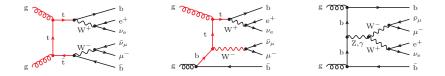

-10% at $m_{t\bar{t}} \sim 4 \,\mathrm{TeV}$

7 / 23

Photon-induced contributions

- dominated by $g\gamma \rightarrow t\bar{t}$ at LO ($\gamma q \rightarrow t\bar{t}q$ negligible)
- $\bullet\,$ overall effect up to $20\%\pm20\%$ in NNPDF and negligible in CT14QED

Important to constrain NNPDFs with data sensitive to $\gamma(x, Q^2)$ at high-x


1 $pp \rightarrow t\bar{t}$ at NLO EW

2 $pp \rightarrow WWb\bar{b}$ at NLO QCD+EW

(3) Resonance aware NLO+PS matching for $pp \rightarrow W^+W^-b\bar{b}$

(4) $t\bar{t} + 3$ jets at NLO QCD

$pp \rightarrow WWb\bar{b}$ at NLO QCD

On-shell $t\bar{t}$ production×decay in NWA [Bernreuther et al. '04; Melnikov, Schulze '09]

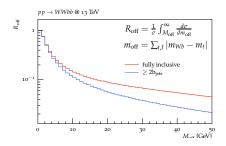
$$\lim_{\Gamma_t \to 0} |\frac{1}{p_t^2 - m_t^2 + i\Gamma_t m_t}|^2 = \frac{\pi}{\Gamma_t m_t} \delta(p_t^2 - m_t^2) \quad \Rightarrow \quad \text{life much simpler beyond LO}$$

Full calculations of $pp \rightarrow W^+W^-b\bar{b}$ [Denner et al. '10; Bevilacqua et al. '10; Heinrich et al. '13; Cascioli et al '13; Frederix'13] **and** $WWb\bar{b}j$ [Bevilacqua et al, '15–'16]

- $t\bar{t}$ production and decays at NLO with off-shell effects
- $t\bar{t} + Wt$ and non-resonant channels with interferences
- 0- and 1-jet bins thanks to $m_b > 0$ [Cascioli et al '13; Frederix'13]

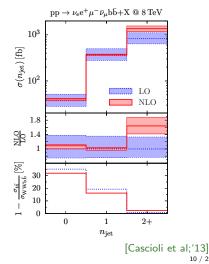
Deviations from naive NWA can be sizable

In inclusive $t\bar{t}$ observables (2 *b*-jets)

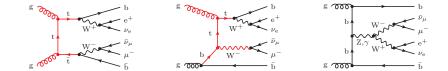

formally or EW order

$$\frac{\Gamma_t}{m_t} \simeq \alpha \simeq 10^{-2}$$

and typically strongly suppressed


In off-shell regions

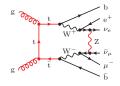
• 10% of $\sigma_{t\bar{t}}$ with off-shellness > 10 GeV



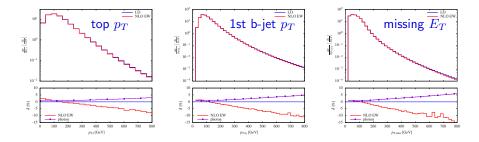
In presence of jet vetoes

• beyond 30% *Wt* contributions

^{10 / 23}



Exact $2 \rightarrow 6$ NLO EW calculation

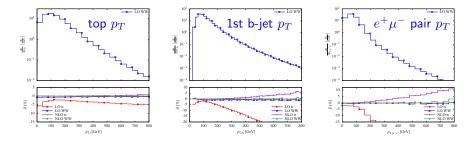

- fully differential 6-particle final state
- NLO EW top decays
- off-shell $t\bar{t} + Wt$ + non-resonant contributions

- 2 *b*-jets ($p_T > 25 \text{ GeV}$, $|\eta| < 2.5$)
- 2 charged leptons ($p_T>20\,{\rm GeV},~|\eta|<2.5)$ and missing $E_T>20\,{\rm GeV}$

NLO EW corrections and γg contributions [Denner and Pellen '16]

NLO EW corrections

- up to -10-15% at $p_T\sim 800~{\rm GeV}$
- qualitatively consistent with [Pagani et al '16] for reconstructed top p_T


γ -induced contributions (γg at LO and γq at NLO EW included)

- 5–6% at $p_T \sim 800 \, {\rm GeV}$
- smaller wrt [Pagani et al '16] due to fixed $\mu_F = m_t$

Exact $pp \rightarrow b\bar{b} + 4\ell$ vs double-pole approximation

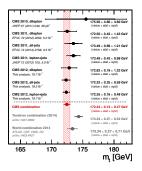
Double-pole approximation (similar to $t\bar{t}$ MC generators!)

- on-shell $t\bar{t} \rightarrow b\bar{b} + 4\ell$ matrix elements
- approx. off-shell effects via $1/[(p^2 m_t^2)^2 + \Gamma_t^2 m_t^2]$ distributions

Genuine off-shell and Wt effects (see deviations wrt LO $t\bar{t}$) • +3% for σ_{tot} and +5% in tail of reconstructed top p_T

• beyond 20–30% in p_T -tails of individual top-decay products

 \Rightarrow NLO EW and $\mathcal{O}(\Gamma_t/m_t)$ effects madatory for precision at high p_T


1 $pp \rightarrow t\bar{t}$ at NLO EW

2 $pp \rightarrow WWb\bar{b}$ at NLO QCD+EW

(3) Resonance aware NLO+PS matching for $pp \rightarrow W^+W^-b\bar{b}$

(4) $t\bar{t} + 3$ jets at NLO QCD

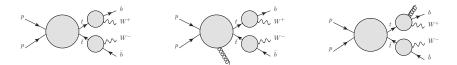
Precision m_t determination

Direct and indirect m_t determinations

- $\Delta m_t^{(\mathrm{exp})} \sim 0.5\,\mathrm{GeV}$ but spread around 2 GeV
- EW precision fit ($m_t = 177 \pm 2.1 \,\text{GeV}$) 1.6 σ above world average

Kinematic m_t^{pole} determinations

- excellent experimental systematics
- require accurate theory understanding of $m_t^{\overline{\mathrm{MS}}} \leftrightarrow m_t^{\mathrm{pole}} \leftrightarrow \mathrm{observables}$


Non-perturbative (renormalon) ambiguity in $m_t^{\overline{\mathrm{MS}}} \leftrightarrow m_t^{\mathrm{pole}}$

• intrinsic $\mathcal{O}(\Lambda_{\rm QCD})$ ambiguity of pole mass much smaller than previously expected: $\Delta m_t^{\rm pole} \sim 70 \text{ MeV}$ [Beneke et al, 1605.03609]

Monte Carlo simulations with higher-order $pp \rightarrow WWb\bar{b}$ matrix elements

- well defined m_t^{pole} input (no MC mass!)
- systematic precision improvements in $m_t^{
 m pole} \leftrightarrow$ observables

Resonance aware NLO+PS matching method

Long-standing problem: NLO+PS for resonant $pp \rightarrow WWb\bar{b}$ MEs

- uncontrolled M_{Wb} shifts from resonance unaware first emission and showering
- \Rightarrow highy inefficient event generation
- \Rightarrow unphysical order $\alpha_S^2 m_t / \Gamma_t \sim 1$ distortion of top line shape and related observables

Resonance aware Powheg matching [Jezo and Nason, 1509.09071]

- $\bullet~$ guiding principle: respects on-shellness and all-order factorisation of top production×decay for $\Gamma_t\to 0$
- \Rightarrow assign radiation to top production or decays consistent with $\Gamma_t \rightarrow 0$ limit
- \Rightarrow modified NLO+PS approach to preserve resonance virtualities at all stages

see analogous approach in MC@NLO [Frederix et al, 1603.01178]

$pp \rightarrow b\bar{b} + 4\ell$ resonance aware NLO+PS generator

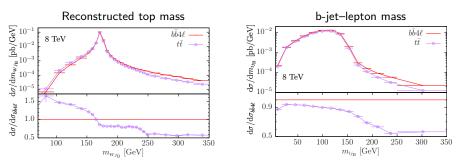
[Jezo, Lindert, Nason, Oleari, S.P., 1607.04538]

http://powhegbox.mib.infn.it

based on POWHEG+OPENLOOPS

Precision improvements wrt standard $t\bar{t}$ NLO+PS generators

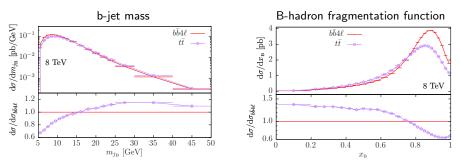
- full $pp \rightarrow t\bar{t} + Wt \rightarrow b\bar{b} + 4\ell$ process with $t\bar{t}-tW$ interference
- well defined $M_t^{(OS)}$ with quantum corrections to top propagators
- applicable to observables with unresolved b quarks (jet vetoes) thanks to $m_b > 0$
- NLO+PS top production and decay with multi-radiation scheme [Campbell, Ellis, Nason, Re '15]



Potentially very useful for

- m_t determinations
- Wt measurements and top backgrounds with jet vetoes or high p_T /missing E_T

$pp \rightarrow b\bar{b}4\ell$ vs traditional Powheg $t\bar{t}$ generator I


- $b\bar{b}4\ell$: NLO+PS $pp \rightarrow e^+\mu^-\nu_e\bar{\nu}_\mu b\bar{b}$ [Jezo et al, 1607.04538]
 - $t\bar{t}$: NLO+PS $pp \rightarrow t\bar{t}$ with LO+PS decays (hvq) [Frixione, Nason, Ridolfi, '07]

Significant effects for m_t determination

- asymmetric shape distortion around the resonance
- average M_{Wj_B} roughly 0.5 GeV higher (within ± 30 GeV around m_t) in $b\bar{b}4\ell$
- 20–30% effects around the $M_{\ell j_B}$ edge

$pp \rightarrow b\bar{b}4\ell$ vs traditional Powheg $t\bar{t}$ generator II

Significant effects in b-jet properties

- narrower *b*-jets and harder *B*-fragmentation
- due to reduced radiation from b-quarks in $b\bar{b}4\ell$ generator

calls for detailed studies of realistic LHC observables

1 $pp \rightarrow t\bar{t}$ at NLO EW

- 2 $pp \rightarrow WWb\bar{b}$ at NLO QCD+EW
- (3) Resonance aware NLO+PS matching for $pp \rightarrow W^+W^-b\bar{b}$

(4) $t\bar{t} + 3$ jets at NLO QCD

$tar{t}+3\,{ m jets}$ at NLO [Moretti, Höche, S.P., Maierhöfer, Siegert, ArXiv:1607.06934]

Motivations for $t\bar{t}$ +multijet precision

- benchmark for perturbative QCD and tools
- large background systematics in $t\bar{t}H(b\bar{b})$ and BSM searches

Technical challenge addressed with Sherpa+OpenLoops

 ${\ensuremath{\, \rm o}}$ fully coloured $2\to 5$ process with heavy quarks

partonic channel $\setminus N$	0	1	2	3
$gg \to t\bar{t} + N g$	47	630	9'438	152'070
$u\bar{u} \to t\bar{t} + Ng$	12	122	1'608	23'835
$u\bar{u} \to t\bar{t}u\bar{u} + (N-2)g$	_	-	506	6'642
$u\bar{u} \to t\bar{t}d\bar{d} + (N-2)g$	_	_	252	3'321

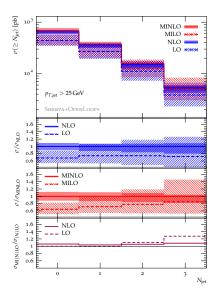
number of 1-loop diagrams

Study of scale choices and uncertainties for non-trivial multi-scale process

- hard global scale $\mu = H_T/2$: good convergence for V+multijets [Blackhat+Sherpa]
- MINLO method [Hamilton, Nason, Zanderighi '12]: improved convergence for multi-scale processes through NLO+NLL CKKW resummation

MINLO automation in Sherpa [Höche et al, ArXiv:1607.06934]

Interpretation of $t\bar{t} + N$ jet events throught k_T -jet clustering


- $t \bar{t} + M$ jet core process with $0 \leq M < N$ and $\mu_{
 m core} = H_T/2$
- N-M ordered jet emissions at $q_1 < q_2 < \ldots q_{ ilde{N}} < \mu_{
 m core}$

CKKW scale choice + Sudakov FFs for ext & int lines $[\alpha_S(\mu_R)]^{N+2} = [\alpha_S(\mu_{\rm core})]^{2+M} \prod_{i=1}^{\tilde{N}} \alpha_S(q_i),$ $\Delta_a(q_{\min}, q_i) \quad \text{and} \quad \Sigma(q_k, q_l) = \frac{\Delta_a(q_{\min}, q_l)}{\Delta_a(a_{\min}, q_k)}$

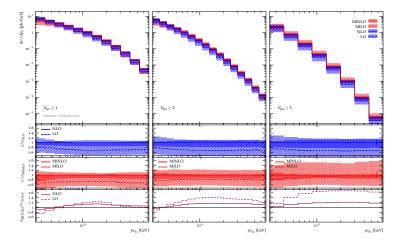
Matched to $t\bar{t} + N$ jet NLO calculations

• $\mathcal{O}(\alpha_S)$ amputation of Sudakov FFs

$t\bar{t} + 0, 1, 2, 3$ jet cross sections at 13 TeV

Setup

- stable tops and anti-k_T jets
- R = 0.4, $p_{T,j} > 25 \, {\rm GeV}$, $|\eta_j| < 2/5$
- Ntuples allow decays & showering


Plotted predictions and ratios

- LO/NLO at $\mu = H_T/2$
- MILO/MINLO
- MINLO/NLO

NLO corrections and uncertainties

- MINLO convergence better at large N_{jets} (also for larger $p_{T,j}$)
- $\sim 10\%$ factor-2 variations in (MI)NLO
- 4-8% MINLO/NLO agreement!

n-th jet p_T for $pp \rightarrow t\bar{t} + n$ jets with n = 1, 2, 3

- large NLO/LO but excellent MINLO convergence at large $N_{\rm jets}$ and p_T
- In general: very good MINLO/NLO agreement and factor-2 scale variations consistent with TH uncertainty $~\lesssim10\%$

Summary

NLO EW corrections to on-shell $t\bar{t}$ production

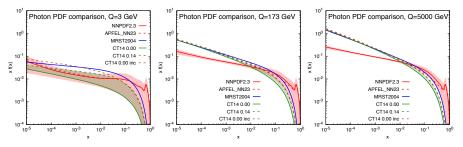
- Sudakov EW effects around -15% for $p_{T,\mathrm{top}}\sim\mathsf{TeV}$
- $\gamma g \rightarrow t\bar{t}$ can be similarly large (with NNPDFs) or negligible (other PDFs)

Off-shell $e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ production at NLO EW

- NLO EW predictions for fully differential final state
- sizeable off-shell and Wt effects at large p_T and missing E_T

First $e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ **NLO+PS generator** (resonance-aware matching method)

- new wrt standard NLO+PS: NLO decays, off-shell effects, $t\bar{t} + Wt$, ...
- potential shift $\Delta m_t \sim 0.5 \, {
 m GeV}$ in kinematic m_t determinations

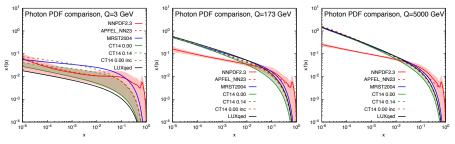

$t\bar{t} + 0, 1, 2, 3$ jets at NLO

- $t\bar{t}$ +multijets at 10% precision level
- important for $t\bar{t}H(b\bar{b})$ and BSM backgrounds

Backup Slides

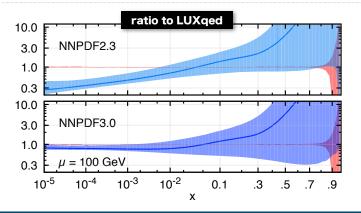
Talk by D. Pagani at QCD@LHC2016

The different photon PDFs ...


- APFEL_NN23 (*Bertone, Carrazza, DP, Zaro '15*) is at the initial scale equivalent to NNPDF2.3QED for all the PDFs. But, the DGLAP QCD and QED running is consistent (similar to NNPDF3.0QED, where also quark and gluons have been updated to NNPDF3.0).

- At small Q: APFEL_NN23 is like NNPDF2.3QED. At large Q: it is like CTEQ14QED at small x, while it is like NNPDF2.3QED at large x.

- CTEQ14QED is close to the upper edge of the CTEQ14QEDinc band.

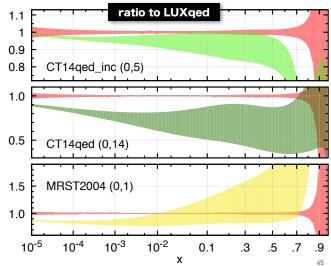

Talk by D. Pagani at QCD@LHC2016

The different photon PDFs ...

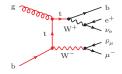
- LUXQED is close to the upper edge of the CTEQ14QED band and to CTEQ14QEDinc

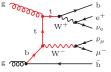
other PDFs v. LUXqed

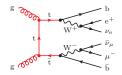
central NNPDF result much higher at large x (but consistent within errors)


at small x, with corrected evolution (NNPDF30), about 20% smaller

44


Talk by G. Salam at HP2 2016


other PDFs v. LUXqed


Others are numerically closer **Error** bands don't always overlap with LUXqed, but within ~10-20%

Wt production in 5F scheme [Demartin et al, 1607.05862]

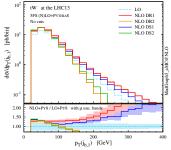
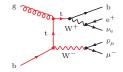
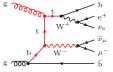


Diagram removal (DR) and subtraction (DS) for $t\bar{t}$ **contamination at NLO** [Frixione et al '08] [Hollik et al '13]


scheme	$tar{t}$ subtraction	$t\bar{t}$ – Wt interf.
DR1	full	subtr.
DR2	full	included
DS1	gauge-inv CT	included
DS2	improved gauge-inv CT	included



Sizable ambiguities at large p_{T,b_1} (no cuts!)

- $t\bar{t}$ -Wt interference
- naive Breit-Wigner modelling of off-shell $t\bar{t}$ effects (used also in standard MCs!)
- \Rightarrow calls for $pp \rightarrow WWb\bar{b}$ at NLO

Wt production in 5F scheme [Demartin et al, 1607.05862]

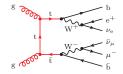
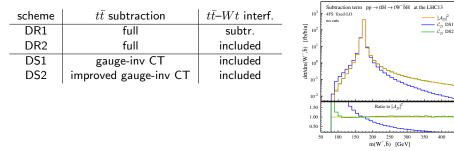
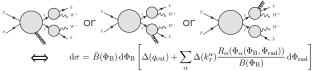



Diagram removal (DR) and subtraction (DS) for $t\bar{t}$ contamination at NLO [Frixione et al '08] [Hollik et al '13]

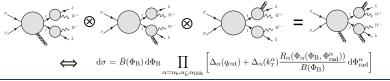


DS1-DS2 = different Breit-Wigner modelling of off-shell $t\bar{t}$ effects

Talk by J. Lindert at HP2 2016

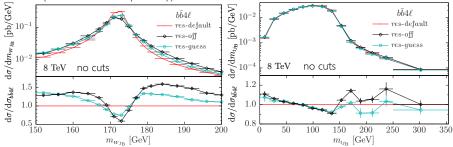
Multiple-radiation scheme

▶ In traditional approach only hardest radiation is generated by POWHEG:



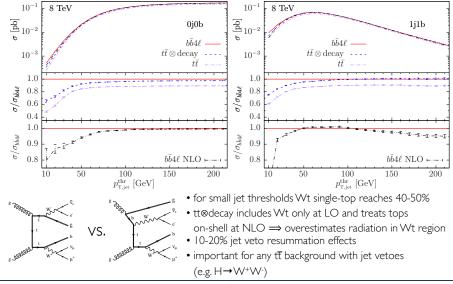
BUT: for top-pair (or single-top) production and decay, emission from production is almost always the hardest.

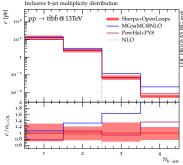
- ➡ emission off decays are mostly generated by the shower.
- Multiple-radiation scheme:


introduced in [Campbell, Ellis, Nason, Re; '15]

- keep hardest emission from all resonance histories.
- merge emissions into a single radiation event with several radiated partons

Results: top-resonance


- default: resonance aware matching & multiple-radiation scheme
- ▶ off: resonance unaware matching
- guess: resonance unaware matching but kinematic guess off resonance structure before PS (based on kinematic proximity)


- \Rightarrow resonance unaware matching yields distortions of important kinematic shapes
- \Rightarrow control of these shapes crucial for **precise top-mass measurements!**
- \Rightarrow resonance assignment based on kinematic proximity with standard matching not sufficient

Talk by J. Lindert at HP2 2016

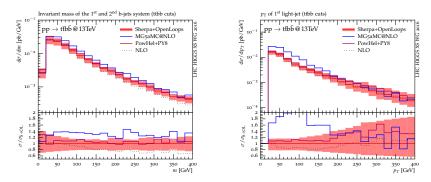
jet vetoes and single-top enriched observables

Inclusive $t\bar{t} + b$ -jet multiplicity distribution

- S-MC@NLO (Sherpa+OpenLoops) with $\mu_{R,F}$ variations
- MG5_aMC@NLO+PY8 w.o. variations
- Powhel+PY8 w.o. variations

NLO vs NLO+PS

 ${\, \bullet \,}$ decent agreement in NLO accurate bins with ≥ 1 and ≥ 2 b-jets

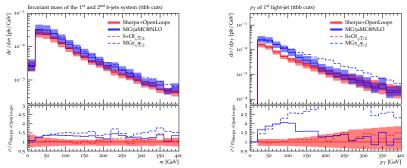

S-MC@NLO vs PowHel+PY8

 $\bullet\,$ good overall agreement in spite of differences in matching method, parton shower, N_f -scheme and ad-hoc cuts in Powhel

S-MC@NLO vs MG5aMC@NLO

• good agreement only for $\geq 1 b$ -jets despite similar matching method and same N_f

$t\bar{t}b\bar{b}$ distributions with $\geq 2b$ -jets

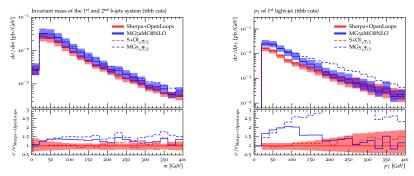

S-MC@NLO vs PowHel+PY8

- well consistent also in observables that receive significant shower corrections
- confirmation of "double-splitting effects" (see e.g. m_{bb})

S-MC@NLO vs MG5aMC@NLO

- 40% enhancement of $t\bar{t} + 2b$ XS & sizable differences in NLO radiation pattern
- related to strong sensitivity to resummation scale (shower starting scale) in MG5

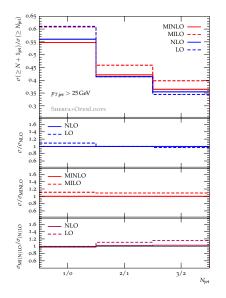
Dependence on resummation scale μ_Q


Nominal MG5_aMC and Sherpa+OpenLoops predictions in YR4

• MG5_aMC supports only $\mu_Q = f(\xi)\sqrt{\hat{s}} \Rightarrow$ smearing function restricted to $0.1 < f(\xi) < 0.25$ to mimic recommended $\mu_Q = H_T/2$ implemented in Sherpa

New: μ_Q variations enhance the discrepancy

- $\mu_Q = \sqrt{\hat{s}}/2$ in Sherpa to mimic MG5_aMC default choice $0.1 < f(\xi) < 1$
- strong µ_Q-sensitivity of MG5_aMC ⇒ much more pronounced deviations


Dependence on resummation scale μ_Q

General aspects and relevance of the problem

- ${\, \bullet \,}$ understanding of c- and b-jet production via $g \to Q \bar Q$ splittings
- how to describe multi-scale process $(M_{tt} \sim 100M_b)$ in NLO+PS framework (MC@NLO) with single scale μ_Q for 1st emission?
- relevant for various BSM searches and $Hc\bar{c}$ and $Hb\bar{b}$ production
- \Rightarrow motivates $pp \rightarrow t\bar{t} + 3$ jets at NLO!

Multijet scaling: $\sigma(t\bar{t} + n \text{ jets})/\sigma(t\bar{t} + n - 1 \text{ jets})$

Motivation

- insights into multi-jet emission pattern
- cancellations of TH and EXP uncertainties

No clear scaling for $t\bar{t} + 0, 1, 2, 3$ jets

- similar to V+jets (scaling onset beyond 3 jets)
- related to delayed opening of qg and qq channels

Perturbative convergence

- NLO/LO and MINLO/MILO corrections of order 10%
- MINLO/NLO agreement of order 1%
- ⇒ benchmarks for precision tests!