Single-top cross-section measurements in ATLAS

Dominic Hirschbühl

BERGISCHE UNIVERSITÄT WUPPERTAL

Top 2016 - Olomouc 19.09.2016

Single top quark production

19.09.2016

Interesting measurements

The cross-section ratio topquark/top-antiquark production is sensitive to the u/d-quark ratio in the **PDF** sets.

Test of **MC generators** using unfolded distributions

Indirect measurement of the top-quark mass

Background processes

Event signature

• One **top quark**, decaying leptonically plus **one** addiontal

WW/WZ/ZZ

W

• light jet (t-channel), or b-quark jet (s-channel), or W boson (Wt)

 $t\bar{t}$ pair production Dilepton veto (t- & s-channel) Multijet production ("fake" leptons) Multijet veto •Lepton selection (electron / muon):

- Exactly one / two isolated lepton
- Jets
 - Anti-k_t algorithm R=0.4,
 - One or two central ones
 - t-channel: including forward jets $|\eta| < 4.5$
 - One or two b-tags
- Missing transverse momentum
 - No additional lepton
 - \rightarrow reduction of $t\bar{t}$ events

s-channel single top quark production

19.09.2016

Dominic Hirschbühl

Event yield / analysis strategy

Process	Pre-fit
Single-top <i>s</i> -channel	610
Single-top t -channel	1230
Assoc. W production	370
$t\bar{t}$ production	8200
W+jets	2600
Z+jets & diboson	290
Multi-jet	600
Total expectation	13980

Dominic Hirschbühl

Parton distribution functions

Leading order

Input: lepton and jet-vectors

Probability of measuring a jet energy E_j if E_p was produced.

19.09.2016

s-channel single top quark production

8

Combining all processes together to one discriminate:

$$P(S|X) = \frac{\sum_{i} \alpha_{S_{i}} \mathcal{P}(X|S_{i})}{\sum_{i} \alpha_{S_{i}} \mathcal{P}(X|S_{i}) + \sum_{j} \alpha_{B_{j}} \mathcal{P}(X|B_{j})}$$

TOP2016 - Olomouc

19.09.2016

s-channel single top quark production

Signal extraction: Profile maximum likelihood fit

Type	$\pm \Delta \sigma / \sigma$ [%]
Data statistics	16
MC statistics	12
Jet energy resolution	12
t-channel generator choice	11
b-tagging	8
s-channel generator scale	7
W+ jets normalization	6
Luminosity	5
t-channel normalization	5
Jet energy scale	5
PDF	3
Lepton identification	2
Electron energy scale	1
$t\bar{t}$ generator choice	1
Lepton trigger	1
Charm tagging	1
Other	< 1
Total	34

Measured cross section: $\sigma(tb) = 4.8 \pm 0.8 \text{ (stat)}_{-1.3}^{1.6} \text{ (syst) pb}$ SM: $\sigma = 5.2 \pm 0.2 \text{ pb}$ Significance: 3.2 σ

Phys. Lett. B 756 (2016) 228-246

Wt production

Run: 267638 Event: 193690558 2015-06-13 23:52:26 CEST

 $\sqrt{\hat{s}} = 13$ TeV L_{int} = 3.2 fb⁻¹ ATLAS-CONF-2016-065

TOP2016 - Olomouc

19.09.2016

n

D

Event selection / Analysis strategy

11

Di-lepton channel

1j1b: S/B ≈ 25% 2j1b: S/B ≈ 10%

Analysis strategy:

jets

In order to separate Wt and $t\bar{t}$ BDTs are used in the two signal regions

Boosted decision tree

2j1b	
Variable	$S\left[10^{-2}\right]$
$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1\ell_2)$	1.7
$\Delta R(\ell_1\ell_2, E_{\mathrm{T}}^{\mathrm{miss}} j_1 j_2)$	1.7
$\Delta R(\ell_1\ell_2,j_1j_2)$	1.5
$m(\ell_1 j_2)$	1.4
$\Delta p_{\mathrm{T}}(\ell_{1}\ell_{2}, E_{\mathrm{T}}^{\mathrm{miss}})$	1.4
$\Delta p_{ m T}(\ell_1,j_1)$	1.4
$m(\ell_1 j_1)$	1.3
$p_{\mathrm{T}}(\ell_1)$	1.3
$\sigma(p_{\rm T}^{\rm sys})(\ell_1\ell_2 E_{\rm T}^{\rm miss}j_1)$	1.2
$\Delta R(\ell_1,j_1)$	1.2
$p_{\mathrm{T}}(j_2)$	0.9
$\sigma(p_{\rm T}^{\rm sys})(\ell_1\ell_2 E_{\rm T}^{\rm miss}j_1j_2)$	0.9
$m(\ell_2 j_1 j_2)$	0.3
$m(\ell_2 j_1)$	0.3
$m(\ell_2 j_2)$	0.1

TOP2016 - Olomouc

19.09.2016

Wt-channel single top quark production

13

Signal extraction: Profile maximum likelihood fit

Measured cross section: $\sigma(Wt) = 94 \pm 10 \text{ (stat)}_{-23}^{28} \text{ (syst) pb}$ SM: $\sigma = 71.1 \pm 3.9 \text{ pb}$ Significance: 4.5 σ

ATLAS-CONF-2016-065

Source	$\Delta \sigma_{Wt} / \sigma_{Wt} [\%]$
Luminosity	2.4
Lepton efficiency, energy scale and resolution	1.3
$E_{\rm T}^{\rm miss}$ soft terms	3.9
Jet energy scale	23
Jet energy resolution	8.9
b-tagging	4.2
NLO matrix element generator	16
Parton shower and hadronisation	20
Initial-/final-state radiation	6.8
Diagram removal/subtraction	4.8
Parton distribution function	2.1
Non- $t\bar{t}$ background normalisation	4.0
Total systematic uncertainty	29
Data statistics	10
Total uncertainty	30
More details in poster More details in poster from trina Cioara	

TOP2016 - Olomouc

19.09.2016

t-channel single top quark production

 $\sqrt{\hat{s}} = 13 \text{ TeV}$ L_{int} = 3.2 fb⁻¹ arxiv:1609.03920

 $\sigma(tq) = 136.0 \pm 5.4 ext{ pb}$ $\sigma(\bar{t}q) = 81.0 \pm 4.1 ext{ pb}$ Calculated @ NLO

19.09.2016

Dominic Hirschbühl

Event yield

q	-q'
W to the second	- t
g seconsecond	∼ ī

Process	ℓ^+ channel	ℓ^- channel
tq	4200 ± 170	8± 3
$\overline{t}q$	5± 2	2710 ± 140
tī	13100 ± 790	13100 ± 790
Wt	1640 ± 110	1640 ± 110
$t\bar{b}$ + $\bar{t}b$	298 ± 25	199 ± 18
W^+ +jets	10500 ± 2200	<1
W^- +jets	<1	8730 ± 1800
Z, VV+jets	1530 ± 320	1410 ± 300
Multijets	2400 ± 1200	2400 ± 1200
Total expected	33600 ± 2600	30200 ± 2300
Data observed	34 459	31 056

- + channel: S/B \approx 14%
- channel: S/B ≈ 10%
- \rightarrow Use neural network to:
 - Improve S/B
 - Averaging out systematic shape effects

Separated into + and – lepton charge!

Neural network

Choice of the variables:

- Good data/MC agreement
- Good separation power •

Typical training parameters

- 50% signal / 50% background
- Only top and W+jets samples used

Validation of the networks

Overtraining test, Application in validation regions

TOP2016 - Olomouc

Inclusive cross section

Source	$\frac{\Delta\sigma(tq)}{\sigma(tq)}[\%]$	$\frac{\Delta \sigma(\bar{t}q)}{\sigma(\bar{t}q)} [\%]$
Data statistics	± 2.9	± 4.1
Monte Carlo statistics	± 2.8	± 4.2
Reconstruction efficiency a	nd calibration	uncertainties
Muon uncertainties	± 0.8	± 0.9
Electron uncertainties	< 0.5	± 0.5
JES	± 3.4	± 4.1
Jet energy resolution	± 3.9	± 3.1
$E_{\rm T}^{\rm miss}$ modelling	± 0.9	± 1.2
b-tagging efficiency	± 7.0	± 6.9
c-tagging efficiency	< 0.5	± 0.5
Light-jet tagging efficiency	< 0.5	< 0.5
Pile-up reweighting	± 1.5	± 2.2
Monte Carle	o generators	
tq parton shower generator	± 13.0	± 14.3
tq NLO matching	± 2.1	± 0.7
tq radiation	± 3.7	± 3.4
$t\bar{t}$, Wt , $t\bar{b} + \bar{t}b$ parton shower generator	± 3.2	± 4.4
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$ NLO matching	± 4.4	± 8.6
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$ radiation	< 0.5	± 1.1
PDF	± 0.6	± 0.9
Background 1	ormalisation	
Multijet normalisation	± 0.3	± 2.0
Other background normalisation	± 0.4	± 0.5
Luminosity	± 2.1	± 2.1
Total systematic uncertainty	± 17.5	± 20.0
Total uncertainty	± 17.8	± 20.4

Signal extraction:

Maximum likelihood fit

Systematics evaluated using pseudo experiments

Measured cross section:

 $\sigma(tq) = 156 \pm 5(\text{stat}) \pm 27(\text{syst}) \pm 3 \text{ (lumi) pb}$ $\sigma(\bar{t}q) = 91 \pm 4(\text{stat}) \pm 18(\text{syst}) \pm 2 \text{ (lumi) pb}$

Cross section ratio

The charge of the top quark is connected to the type of the incoming light-flavour quark \rightarrow top-quark/top-antiquark production is sensitive to

d/u-quark ratio : $R_t = \sigma(t) / \sigma(\bar{t})$

Measured ratio: $R_t = 1.72 \pm 0.09 \text{ (stat)} \pm 0.18 \text{ (syst)}$

arxiv:1609.03920

TOP2016 - Olomouc

19.09.2016

Dominic Hirschbühl

t-channel single top quark production

TOP2016 - Olomouc

19.09.2016

Dominic Hirschbühl

Event yield / analysis strategy

Process	ℓ^+ SR	ℓ^- SR
$tq \ ar{t}q$	$\begin{array}{rrr} 11400\pm & 470\\ 10\pm & 1 \end{array}$	$\begin{array}{rrr} 17 \pm & 1 \\ 6290 \pm & 350 \end{array}$
$t\bar{t}, Wt, t\bar{b}/\bar{t}b$ W^+ + jets W^- + jets Z, VV + jets Multijets	$18\ 400 \pm 1\ 100 \\18\ 700 \pm 3\ 700 \\25 \pm 5 \\1\ 290 \pm 260 \\4\ 520 \pm 710$	$18000 \pm 1100 \\ 47 \pm 10 \\ 14000 \pm 2800 \\ 1190 \pm 240 \\ 4520 \pm 660$
Total expected Data	54300 ± 4000 55800	$ \begin{array}{r} 44100\pm3100 \\ 44687 \end{array} $

Separated into + and – lepton charge!

- channel: S/B ≈ 17%

Measurement is done in a fiducial phase space close to the experimental one

Multivariate Analyses

Choice of the variables:

- Good data/MC agreement
- Intensive study to reduce number of input variables, while keeping sensitivity

Typical training parameters

- 50% signal / 50% background Validation of the networks
 - Overtraining test, Application in validation regions

Fiducial cross section result

Source	$\Delta \sigma_{ m fid}(tq) / \sigma_{ m fid}(tq) \ [\%]$	$\Delta \sigma_{\rm fid}(ar{t}q) / \sigma_{\rm fid}(ar{t}q) \ [\%]$
Data statistics	± 1.7	± 2.5
Monte Carlo statistics	± 1.0	± 1.4
Background normalisation	< 0.5	< 0.5
Background modelling	± 1.0	± 1.6
Lepton reconstruction	± 2.1	± 2.5
Jet reconstruction	± 1.2	± 1.5
JES	± 3.1	± 3.6
Flavour tagging	± 1.5	± 1.8
$E_{\rm T}^{\rm miss}$ modelling	± 1.1	± 1.6
b/\bar{b} efficiency	± 0.9	± 0.9
PDF	± 1.3	± 2.2
tq ($\bar{t}q$) NLO matching	± 0.5	< 0.5
tq ($\bar{t}q$) parton shower	± 1.1	± 0.8
tq ($\bar{t}q$) scale variations	± 2.0	± 1.7
$t\bar{t}$ NLO matching	± 2.1	± 4.3
$t\bar{t}$ parton shower	± 0.8	± 2.5
$t\bar{t}$ scale variations	< 0.5	< 0.5
Luminosity	± 1.9	± 1.9
Total systematic	± 5.6	± 7.3
Total (stat. + syst.)	± 5.8	± 7.8

Several uncertainties are reduced for the fiducial cross-section w.r.t the total cross-section

> **Total uncertainty:** *tq* : 5.8% ! *t̄q* : 7.8%

19.09.2016

Comparisons with different MC generators

Predictions calculated using:

 $\sigma_{fid} = A_{fid} \cdot \sigma_{total}$

 σ_{total} : taken from MC generators

- 5FS gives in general slighty higher predictions
- scale uncertainty on 4FS calculations is larger than on 5FS ones
- Herwig++ has too soft jets \rightarrow lower acceptance

Extrapolated cross section

Measured cross section extrapolated to full phase space is calculated with:

$$\sigma_{tot} = \frac{1}{A_{fid}} \cdot \sigma_{fid}^{meas}$$

Taking into account in a correlated way theory uncertainties on A_{fid}

Measured extrapolated cross section using Powheg+Pythia6: $\sigma_{tot}(tq) = 56.7 \pm 0.9(\text{stat}) \pm 2.7(\text{exp}) \pm 3.0(\text{theo}) \pm 1.1 (\text{lumi}) \text{ pb}$ 1.6%4.8%5.3%1.9% $\sigma_{tot}(\bar{t}q) = 32.8 \pm 0.8(\text{stat}) \pm 2.2(\text{exp}) \pm 1.7(\text{theo}) \pm 0.6 (\text{lumi}) \text{ pb}$ 2.4%6.7%5.2%1.9%

Cross section ratio

Source	$\Delta R_t/R_t$ [%]		ATLAS Preliminary	I		• 1 •	√s=8 Te	V, 20.2 fk	o ⁻¹
Data statistics Monte Carlo statistics	$\pm 3.0 \\ \pm 1.8$		Measurement result ■ stat. ⊕ syst. ■ stat. Predictions calculated in 5ES:	•					
Background modelling Jet reconstruction $E_{\rm T}^{\rm miss}$ modelling $tq~(\bar{t}q)$ NLO matching $t\bar{t}$ NLO matching $t\bar{t}$ parton shower PDF	± 0.7 ± 0.5 ± 0.6 -0.5/ + 0.9 ± 2.3 ± 1.7 ± 0.7		scale \oplus PDF + α_s unc. ABM (5 flav.) ATLAS epWZ12 CT14 HERAPDF 2.0 JR14 (VF) MMHT2014				-	•	
Total systematic Total (stat. + syst.)	± 3.8 ± 4.9	1.	NNPDF 3.0 4 1.5 1.6		1.7	1.8	1.9	2	R _t

Using the extrapolated cross section: $R_t = 1.73 \pm 0.05 \text{ (stat)} \pm 0.07 \text{ (syst)}$

Differential cross sections

Differential cross sections

19.09.2016

Differential cross section

t-channel Summary

Determination of $|V_{tb}|$

Cross section is proportional to $|V_{tb}|^2$

• In the Standard Model with 3 quark generation one expects $|V_{tb}| \sim 1$ (unitarity):

•
$$|V_{tb}^{\text{obs}}| = \sqrt{\frac{\sigma^{\text{obs}}}{\sigma^{\text{theo}}}}$$

Assumptions for the extraction:

- Independence of 3 quark generations
- Left-handed weak interaction
- Top quark decays only into b quarks: $(|V_{td}|, |V_{ts}| \ll |V_{tb}|)$

Can be done with all three single top processes

Highest precision for t-channel: $\sim 4\%$

	ATLAS+CMS Preliminary	LHC <i>top</i> WG	September 2016				
	$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top quark	production					
r	σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2010) PRD81 (2010) 054028	054018,	total theo				
	$\Delta \sigma_{\text{theo}}$: scale \oplus PDF						
	m _{top} = 172.5 GeV		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$				
	t-channel:						
	ATLAS / TeV PRD 90 (2014) 112006 (4.59 fb ⁻¹)		$1.02 \pm 0.06 \pm 0.02$				
	ATLAS 8 TeV Paper in preparation (20.2 fb ⁻¹)	 } = 	$1.03 \pm 0.04 \pm 0.02$				
	CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	<mark>⊢}•⊢</mark> -I	$1.020 \pm 0.046 \pm 0.017$				
	CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	<mark>⊦⊹≖€-1</mark>	$0.979 \pm 0.045 \pm 0.016$				
	CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊢++</mark> +	$0.998\pm 0.038\pm 0.016$				
	CMS 13 TeV paper in preparation (2.3 fb ⁻¹)	F-++●+1	$1.03 \pm 0.07 \pm 0.02$				
	ATLAS 13 TeV arXiv:1609.03920 (3.2 fb ⁻¹)	⊦ ↓ ,=,1	$1.07 \pm 0.09 \pm 0.02$				
	Wt:						
	ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)	▶ • • • • • • • • • • • • • • • • • • •	$1.03^{+0.15}_{-0.18}\pm0.03$				
	CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	F+	$1.01^{+0.16}_{-0.13}$ $^{+0.03}_{-0.04}$				
	ATLAS 8 TeV ^{1,2} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	P	$1.01 \pm 0.10 \pm 0.03$				
	CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	F	$1.03 \pm 0.12 \pm 0.04$				
	LHC combined 8 TeV ¹² ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	┡ ╶╎┋╤╶╎╶ ┫	$1.02 \pm 0.08 \pm 0.04$				
	ATLAS 13 TeV ATLAS-CONF-2016-065 (3.2 fb ⁻¹)	++++	1.14 ± 0.24 ± 0.04				
	s-channel:						
	ATLAS 8 TeV ² PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93^{+0.18}_{-0.20} \pm 0.04$				
			including top-quark mass uncertainty including beam energy uncertainty				
	0.4 0.6 0.8	3 1 1.2	1.4 1.6 1.8				
	t _{LV} V _{tb}						

Summary

Have shown first results with the 2015 dataset @ 13 TeV for t-channel and Wt \rightarrow no surprises, main systematic: generator modelling

Comprehensive measurement in the t-channel @ 8 TeV Fiducial cross section

Cross section extrapolated to the full phase space Cross section ratio

Differential cross sections for top p_T , top rapidity, and the first time also for the forward light jet

Evidence for s-channel production @ 8 TeV Explored matrix element technique

