

PHYSICS ASTRONOMY

## Differential tr cross section measurements at the LHC – as a function of kinematics variables –

### <u>Steffen Henkelmann</u> University of British Columbia (UBC)

### **On Behalf of the ATLAS and CMS Collaborations**





September 20th, 2016



### INCREASING AMOUNT OF DATA!



### INCREASING AMOUNT OF DATA!

proton-proton collisions at

13 TeV centre-of-mass energy

<del>Run:</del> 266919 Event: 19982211 2015-06-04 00:21:24

 $\mu$  [~35 GeV]

[~25 GeV to 80 GeV]

### No. of produced tt events:

2011: ~800k (4.6/fb, 7 TeV) 2012: ~5.1 million (20.3/fb, 8 TeV) 2015: ~2.6 million (3.2/fb, 13 TeV) 2016: ~16 million (20/fb, 13 TeV)

N@13TeV/N@8TeV ~

tt candidate event @13 TeV

(l+jets channel)

EXPERIMENT Thanks to outstanding LHC performance

### TT PRODUCTION AT THE LHC

### Mainly produced through gluon-gluon-fusion

- Constrain gluon PDFs especially at high x
- Extract *α*<sub>S</sub>, M<sub>top,...</sub>

### Probe pQCD to higher orders

- Probe different renormalization and factorization scales
- Probe matching procedures and tuning parameters
- Constrain modelling of parton shower and hadronisation

### Similar signature to new physics searches

- Deviations in differential distributions that might not be detectable with inclusive cross-section measurements
- Reduced modelling uncertainties enhance sensitivity to new physics
- Important background for searches



266919 Event: 19982211 2015-06-04 00:21:24

Run:

### TT PRODUCTION AT THE LHC

### Mainly produced through gluon-gluon-fusion

- Constrain gluon PDFs especially at high x
- Extract *α*<sub>S</sub>, M<sub>top,...</sub>

### Probe pQCD to higher orders

- Probe different renormalization and factorization scales
- Probe matching procedures and tuning parameters
- Constrain modelling of parton shower and hadronisation

### Similar signature to new physics searches

- Deviations in differential distributions that might not be detectable with inclusive cross-section measurements
- Reduced modelling uncertainties enhance sensitivity to new physics
- Important background for searches

Interface between state-of-the art theory calculations, MC generators and experiment

Common definitions across ATLAS and CMS and theory community

Run: 266919 Event: 19982211 2015-06-04 00:21:24

S+CMS Preliminary

√*s* [TeV]

#### **Top-quark definition**

- detector level
- particle level
- parton level

#### Covered phase-space

- detector
- fiducial
- full

#### **Decay topology**

- boosted
- resolved





#### **Detector phase-space, detector level measurements**

- Depends on detector response modelling (resolution & efficiencies)
- Experiment dependent, not theorist accessible

**Cross-section definition** 

- normalized

#### • Top-quark definition

- detector level
- particle level
- parton level

#### Covered phase-space

- detector
- fiducial
- full

#### Decay topology

- boosted
- resolved

#### Cross-section definition

- normalized
- absolute

**Top-quark proxy** using reconstructed decay products after hadronisation

 $\rightarrow$  directly measurable quantities





Top-quark proxy using

 $\rightarrow$  directly measurable quantities

after hadronisation

reconstructed decay products

LHCtop WG

#### **Top-quark definition**

- detector level
- particle level
- parton level

De

**Covered** phase-space

## <u>Truth object definitions</u> (based on particles with $\tau_{particle} = 3 \times 10^{-11} \text{ s}$ )

- **Leptons** Prompt either directly or through  $\tau$ -decay (not from hadronic decays)
  - ▷ Charged ( $e/\mu$ ): Additionally corrected for non-measurable radiative effects  $\rightarrow$  add prompt-photons in  $\Delta R < 0.1$
- **Particle jets** Clustering of all stable particles, except the dressed leptons and photons, using anti- $k_T$  algorithm (R = 0.4[0.5])
- Jet flavour ID— b-jets are jets containing a B-hadron using ghost matching  $\rightarrow$  re-cluster jets including B hadrons ( $p_T > 5$  GeV) with momentum scaled to negligible value
- Large R-jets— To be discussed

### **Top-quark proxy identification**

- Algorithm to define the top quark pair using constraints on  $M_t$ ,  $M_W$ ,  $\Delta R$ -separation,  $p_T$ , ...
- Kinematic- and fiducial volume selection similar to detector acceptance

#### • Top-quark definition

- detector level
- particle level
- parton level

#### Covered phase-space

detector

#### fiducial

• full

#### Decay topology

- boosted
- resolved

#### Cross-section definition

- normalized
- absolute



→directly measurable quantities

#### Fiducial phase-space, particle level measurements

- Based on well defined quantities
- Matches detector phase-space closely

   minimizes theoretical uncertainties from experimental side
- Unfolding procedure for detector response needed
- Probe of parton shower and hadronisation models
- Not directly comparable to ME calculations

#### • Top-quark definition

- detector level
- particle level
- parton level

#### Covered phase-space

- detector
- fiducial
- full

#### Decay topology

- boosted
- resolved

#### Cross-section definition

- normalized
- absolute



# **Top-quark** after radiation but before decay

#### Full phase-space, parton level measurements

- Probe latest N<sup>(N)</sup>LO + N<sup>(N)</sup>LL pQCD
- Constrain PDFs
- Extract *α*<sub>S</sub>, M<sub>top</sub>,...
- Increased model dependence

DECENT DECULTO

|                     | R e                                                                                                                                                          | cent Resu                                                         | ILTS / 🔥                                             | EW                                                                                          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                     | 17.5                                                                                                                                                         |                                                                   | lup cesults                                          |                                                                                             |
|                     | l+jets                                                                                                                                                       | dilepton                                                          | all-had                                              | <u>surie</u> 2016                                                                           |
| ATLAS               | Phys. Rev. D93 (2016) 032009<br>boosted, parton/particle<br>arXiv:1511.04716<br>resolved, parton/particle<br>JHEP 06 (2015) 100<br>resolved, parton/particle | arXiv:1607.07281<br>resolved, parton                              |                                                      |                                                                                             |
| CMS                 | arXiv:1607.00837<br>resolved, particle<br>arXiv:1605.00116<br>boosted, parton/particle                                                                       | <u><b>TOP-14-013</b></u><br>resolved, parton                      | <b>arXiv:1509.06076</b><br>resolved parton/particle  |                                                                                             |
|                     | Eur. Phys. J. C 75 (<br>resolved, parton/                                                                                                                    | <b>2015) 542</b><br>particle                                      |                                                      | ATLAS                                                                                       |
|                     | P Ski                                                                                                                                                        | 13 TeV                                                            | :                                                    |                                                                                             |
|                     | l+jets                                                                                                                                                       | dilepton                                                          | all-had                                              |                                                                                             |
| ATLAS<br>EXPERIMENT | CONF-2016-040<br>resolved/boosted, particle                                                                                                                  | <b>TOPQ-2016-04</b> *<br>resolved, particle                       | <u>CONF-2016-100</u> *<br>boosted, particle          | complete lists:                                                                             |
| CMS                 | TOP-16-008 *<br>resolved, parton/particle                                                                                                                    | TOP-16-007<br>resolved, particle<br>TOP-16-011<br>resolved parton | <b><u>TOP–16–013</u></b><br>resolved/boosted, parton | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• |

# DILEPTON MEASUREMENTS

NEW RESULTS ON 7, 8 & 13 TEV

|                                                                                                                                                                                                                             | Available on the CERN CDS information server CMS PAS TOP-16-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                             | CMS Physics Analysis Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATLAS Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                             | Contact: cms-pag-conveners-top@cern.ch 2016/08/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NEW                                                                                                                                                                                                                                                            |
| Available on the CERN CD                                                                                                                                                                                                    | Measurement of particle level differential traces sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measurements of top-quark pair differential cross-sections<br>in the $e\mu$ channel in <i>pp</i> collisions at $\sqrt{s} = 13$ TeV using the<br>ATLAS detector                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |
| CMS PI                                                                                                                                                                                                                      | ysics in the dilepton channel at $\sqrt{s} = 13$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CLEAR RESEARCH (CERN)                                                                                                                                                                                                                                          |
| Contact: cms-pag-convener                                                                                                                                                                                                   | top®cern.cl The CMS Collaboration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CERN                                                                                                                                                                                                                                                           |
| Measurement of<br>quark pair pro                                                                                                                                                                                            | double<br>duction Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | July 27, 2016                                                                                                                                                                                                                                                  |
| on<br>TO<br>A 1<br>ER<br>An<br>re<br>RO<br>RO<br>RO<br>RO<br>SC<br>SC<br>SC<br>SC                                                                                                                                           | The CN Normalised differential cross sections for top quark pair production are measured in the dilepton $(e^+e^-, \mu^+\mu^-, \text{ and } \mu^\pm e^\pm)$ decay channel in proton-proton collisions at a center-of-mass energy of 13 TeV. The measurements are performed with data corresponding to an integrated luminosity of 2.2 fb <sup>-1</sup> collected in 2015 using the CMS detector at the LHC. The cross section is measured differentially as a function of the kinematic properties of the leptons, b jets, top quarks, and top quark pairs at particle | <b>Abstract</b><br>This article presents the measurement of $t\bar{t}$ differential cross-sections in events with exactly one electron and one muon, using an integrated luminosity of 3.2 fb <sup>-1</sup> of proton-proton data                                                                                                                                                                                                                                                                                                                                                      | rential cross-sections in the<br>= 7 and 8 TeV with ATLAS                                                                                                                                                                                                      |
| m Normalized double di<br>tar periment at the LHC.<br>19.7 fb <sup>-1</sup> . The measure<br>tf system. The tf cross<br>two observables charact<br>en data are compared to of                                               | rential cros<br>ns at a cen<br>en analyzed<br>ent is perfo<br>etion is me<br>rrizing the k<br>lculations ir                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at a center-of-mass energy of $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the LHC in 2015. Differential cross-sections are measured as a function of the transverse momentum and absolute rapidity of the top quark, and of the transverse momentum, absolute rapidity and invariant mass of the $t\bar{t}$ system. The $t\bar{t}$ events are selected by requiring one electron and one muon, and at least two jets, one of which must be tagged as containing a <i>b</i> -hadron. The measured differential cross-sections are compared to predictions of NLO generators | is of top quark pair ( <i>i</i> ) production are<br>mentum and the rapidity of the <i>i</i> sys-<br>rgies of $\sqrt{s} = 7$ TeV and 8 TeV. The<br>$br^{-1}$ at 7 TeV and 92 of $-1^{-1}$ at FeV.                                                               |
| approximate next-to-n<br>m generators that comple<br>generators that comple<br>zation, and multiple-p<br>w d<br>which is improved wh<br>are used in the predict<br>tik the gluon distribution<br>the distribution functions | t-to-leading<br>ent fixed-or<br>ton interact<br>the latest g<br>ns. The im<br>the proton<br>the data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | matched to parton showers and the results are found to be consistent with all models within the experimental uncertainties with the exception of the POWHEG-Box + Herwig++ MC, which differs significantly from the data in both $p_{\rm T}(t)$ and $m(t\bar{t})$ .                                                                                                                                                                                                                                                                                                                    | no Colider. Events with top quark pair<br>ing exactly two charged leptons and at<br>ikely to contain a <i>b</i> -hadron. The mea-<br>d selection efficiency to cross-sections<br>compared with different Monte Carlo<br>n. The results are consistent with the |

## ATLAS: DILEPTON



W

 $e/\mu$  with  $p_T > 25$  GeV,  $|\eta| < 2.47$  (excluding crack 1.37 <  $|\eta| < 1.52$ ) anti- $k_t$  jets (R =0.4) with  $p_T > 25$  GeV,  $|\eta| < 2.5$ exactly two oppositely charged leptons (opposite flavour)

 $\geq$ 2 jets ( $\geq$ I b-tagged)

#### Top system reconstruction

- using neutrino weighting method
  - Constraints on  $M_t$ ,  $M_W$  to find optimal comb. for  $\eta(v_{1,2})$  $\rightarrow$  two possible solutions compared to measured MET
- Quantitative comparison to NLO MC generators using  $\chi^2$ -test and p-values
- Dominant uncertainties
  - Statistics, Signal modelling (generator, PS/hadronization and extra radiation), Jet energy scale



 $p_T^{t\overline{t}}$ 

|y<sup>t</sup>t̄|

10



### **CMS:** DILEPTON

#### Measurement at particle level complements TOP-16-011 & Eur. Phys. J. C 75 (2015) 542

#### Event selection / reconstruction

 $e/\mu \text{ with } p_T > 20 \text{ GeV}, \ |\eta| < 2.4$ anti-k<sub>t</sub> jets (R =0.4) with  $p_T > 30 \text{ GeV}, \ |\eta| < 2.4$ exactly two oppositely charged leptons

 $\geq$ 2 jets ( $\geq$ I b-tagged)

+ additional cuts to remove Z background in same flavour channels

Signal modelling and background estimation

Dominant uncertainties



Comparison to NLO MC generators, different NLO matching schemes

#### Top reconstruction

- algebraic reconstruction of neutrino momenta
  - p⊤ balance, Mt, Mw constraints
- smearing according to detector resolution
- $\rightarrow$  increase number of solvable events ~90%



| p⊤ <sup>l</sup> | рт <sup>jet</sup>               | p <sub>T</sub> t |
|-----------------|---------------------------------|------------------|
| yt              | p⊤ <sup>t</sup> t               | y <sup>tī</sup>  |
| m <sup>tt</sup> | $\Delta\varphi^{t\overline{t}}$ |                  |

ATLA



- Comparisons of variety of NLO MC generators using different showering models
  - Including comparisons to Multileg Generators
- MC generator are in agreement with results from CMS and ATLAS
  - ▶ ATLAS: Powheg+HW++ deviates from data in the  $p_T^t$  and  $m^{t\bar{t}}$  (p-value ≤ 0.02)
  - m<sup>tī</sup>: Powheg+Py8 & MG5\_aMC@NLO shows same trend in ATLAS and CMS!



- Comparisons of variety of NLO MC generators using different showering models
  - Including comparisons to Multileg Generators
- MC generator are in agreement with results from CMS and ATLAS
  - ▶ ATLAS: Powheg+HW++ deviates from data in the  $p_T^t$  and  $m^{t\bar{t}}$  (p-value ≤ 0.02)
  - m<sup>tī</sup>: Powheg+Py8 & MG5\_aMC@NLO shows same trend in ATLAS and CMS!



Eur. Phys. J. C 75 (2015) 542 arXiv:1607.07281



- $p_T^{t\bar{t}}$  sensitive to MC tuning parameters and scale settings
- Mis-modelling in  $p_T^{t\bar{t}}$  at 7 and 8 TeV
  - Confirmed by ATLAS (p-value < 0.01)</p>

### NNLO PREDICTIONS AT 8 TEV



- NNLO at 8 TeV shows
  - Good agreement in mtt
  - Tension in high rapidity regime of tt system
    - Rapidity distribution sensitive to PDFs (might yield better NNLO agreement with different PDF choice)

NEW

### DILEPTON MEASUREMENTS IN FULL ENERGY RANGE



Comparisons to state-of-the art predictions

## **CMS:** DILEPTON

### Double differential measurement @ 8 TeV (1<sup>st</sup> of its kind @LHC)

- Imposing tighter constraints on global PDF fits
   → improved resolution of momentum fraction
- Quantitative comparison to state-of-the art predictions (up to aNNLO  $O(\alpha_s^4)$ )  $\rightarrow$  Power to distinguish between modern PDF sets
- Measurement follows procedures in Eur. Phys. J. C 75 (2015) 542
- Unfolding performed simultaneously in bins of two variables
- Dominant uncertainties O(syst~stat)
  - Signal model & JES



## **CMS:** DILEPTON

### Double differential measurement @ 8 TeV (1st of its kind @LHC)

- Imposing tighter constraints on global PDF fits
   improved resolution of momentum fraction
- Quantitative comparison to state-of-the art predictions (up to aNNLO O( $\alpha_s^4$ ))  $\rightarrow$  Power to distinguish between modern PDF sets
- Measurement follows procedures in Eur. Phys. J. C 75 (2015) 542
- Unfolding performed simultaneously in bins of two variables
- Dominant uncertainties O(syst~stat)
  - Signal model & JES



NEW CMS TOP-14-013 **Overview** 8 TeV dilepton ( $e\mu$ ) 19.7/fb parton level full phase space normalized resolved p<sub>T</sub><sup>t</sup>vs.ly<sup>t</sup>l  $|y^t|vs.M_{t\bar{t}}$ ly<sup>tt</sup>lvs.M<sub>t</sub>t p<sub>T</sub><sup>tt</sup> vs.ly<sup>t</sup>  $\Delta \eta^{t\overline{t}} vs.M_{t\overline{t}}$  $\Delta \phi^{t\overline{t}} vs.M_{t\overline{t}}$ 

#### Observations

- pT<sup>t</sup>: Data softer than predictions
- ▶ except for high  $|y^t|$

p<sub>T</sub><sup>t</sup> vs. |y<sup>t</sup>|

#### **Bottom line**

None of the considered MC generators correctly describes all distributions





# L + JETS MEASUREMENTS

NEW RESULTS ON 13 TEV



\*FIRST TIME PRESENTED 1

#### • Top-quark definition

- detector level
- particle level
- parton level

#### Covered phase-space

- detector
- fiducial
- full

#### Decay topology

- boosted
- resolved

#### Cross-section definition

- normalized
- absolute



#### **Resolved and boosted top-quark topologies**

- Higher energies, more top-quark candidates are boosted ( $\Delta R \simeq 2m_t/p_T^t$ )
- Variety of theory models predict new particles at TeV scale
- Probe both low and high p<sub>T</sub> regimes





- Dominant uncertainties
  - Resolved: JES and flavour tagging
  - Boosted: Large R-jet (→JES dominant)



- Data seems softer at high  $p_T$  in both resolved and boosted channels
- pT<sup>t,had</sup>:Trends of NLO MC generators similar to previous results
- |y<sup>t,had</sup>|, m<sup>tt̄</sup>, |y<sup>tt̄</sup>| & p<sup>tt̄</sup>: Level of agreement within quoted uncertainties
- $p_T^{t\bar{t}}$  sensitive to extra radiation and choice of scales

### ATLAS: 13 TeV, l + Jets



- Data seems softer at high  $p_T$  in both resolved and boosted channels
- pT<sup>t,had</sup>: Trends of NLO MC generators similar to previous results
- |y<sup>t,had</sup>|, m<sup>tt̄</sup>, |y<sup>tt̄</sup>| & pT<sup>tt̄</sup>: Level of agreement within quoted uncertainties
- $p_T^{t\bar{t}}$  sensitive to extra radiation and choice of scales

August 1. 16

CONF-2016-040



- Data seems softer at high  $p_T$  in both resolved and boosted channels
- pT<sup>t,had</sup>:Trends of NLO MC generators similar to previous results
- |y<sup>t,had</sup>|, m<sup>tt</sup>, |y<sup>tt</sup>| & p<sup>tt</sup>: Level of agreement within quoted uncertainties
- $p_T^{t\bar{t}}$  sensitive to extra radiation and choice of scales

### **CMS:** 13 TEV, L + JETS

### ID Measurement complements

arXiv:1607.00837 (accepted for PRD)
arXiv:1605.00116 (submitted to PRD)

- + double differential measurements
- Comparisons to NLO MC generator and up to  $N^{(3)}LO O(\alpha_s^5)$  theory prediction
- Dominant uncertainties
  - Particle level: exp. → JES, b-tagging efficiency
  - Parton level: Parton shower & had. model

| Typical uncertainty ranges of uncertainties in the bir |                    |                  |  |  |  |  |  |
|--------------------------------------------------------|--------------------|------------------|--|--|--|--|--|
| Source                                                 | Particle level [%] | Parton level [%] |  |  |  |  |  |
| Statistical uncertainty                                | 1–5                | 1–5              |  |  |  |  |  |
| Jet energy scale                                       | 5-8                | 6–8              |  |  |  |  |  |
| Jet energy resolution                                  | < 1                | < 1              |  |  |  |  |  |
| $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ (non jet)       | < 1                | < 1              |  |  |  |  |  |
| b tagging                                              | 2–3                | 2–3              |  |  |  |  |  |
| Pileup                                                 | < 1                | < 1              |  |  |  |  |  |
| Lepton selection                                       | 3                  | 3                |  |  |  |  |  |
| Luminosity                                             | 2.7                | 2.7              |  |  |  |  |  |
| Background                                             | 1–3                | 1–3              |  |  |  |  |  |
| PDF                                                    | < 1                | < 1              |  |  |  |  |  |
| Fact./ren. scale                                       | < 1                | < 1              |  |  |  |  |  |
| Parton shower scale                                    | 2–5                | 2–9              |  |  |  |  |  |
| POWHEG + PYTHIA8 vs. HERWIG++                          | 1–5                | 1–12             |  |  |  |  |  |
| NLO event generation                                   | 1–5                | 1–10             |  |  |  |  |  |
| mt                                                     | 1–2                | 1–3              |  |  |  |  |  |

NEW

NEW\* TOP-16-008 (to be submitted to PRD) September 20, 16

#### Overview

CMS

#### 13 TeV l+jets 2.3/fb

#### parton level

full phase space absolute & normalized

#### particle level

fiducial phase space absolute & normalized

#### resolved



### **CMS:** 13 TEV, L + JETS

ID Measurement complements

arXiv:1607.00837 (accepted for PRD) arXiv:1605.00116 (submitted to PRD)

- + double differential measurements
- Comparisons to NLO MC generator and up to  $N^{(3)}LO O(\alpha_s^5)$  theory prediction
- Dominant uncertainties
  - Particle level: exp. → JES, b-tagging efficiency
  - Parton level: Parton shower & had. model

Typical uncertainty ranges of uncertainties in the bin Particle level [%] Parton level [%] Source Statistical uncertainty 1–5 1–5 5-8 6-8 Jet energy scale Jet energy resolution < 1< 1  $\vec{p}_{\rm T}^{\rm miss}$  (non jet) < 1 < 1 2–3 2–3 b tagging Pileup < 1< 1Lepton selection 3 3 2.7 Luminosity 2.7 Background 1 - 31 - 3PDF < 1< 1 Fact./ren. scale < 1 < 1 2–5 2–9 Parton shower scale 1–12 POWHEG + PYTHIA8 vs. HERWIG++ 1–5 NLO event generation 1–5 1–10 1–2 1–3  $m_{\rm t}$ 

NEW



- Comparison between inclusive and NLO Multileg generators  $\rightarrow$  large impact of PS and had. modelling
- pT<sup>tt̄</sup> best described by Powheg + Py8 (p-value = 0.805)
- pT<sup>t,had</sup> best described by MG5\_aMC@NLO+Py8 [FxFx] (p-value = 0.83)
- $p_T^{t,had}$ ,  $p_T^{t\bar{t}}$  and  $m^{t\bar{t}}$ : Powheg+HW++ deviates from data (p-value < 0.01)



13 TeV

l+jets

2.3/fb

parton level

full phase space

absolute & normalized

particle level

fiducial phase space

absolute & normalized

CMS

### N(N)LO PREDICTIONS AT 13 TEV





### 13 TeV | parton level

• NLO + NNLL seems to predict slightly harder  $M_{t\bar{t}}$  spectrum (p-value = 0.14)

Trend observed in 7 TeV & 8 TeV by ATLAS (p-value ~ 0.3) and at 8 TeV by CMS in dilepton channel

- pT<sup>t,lep</sup> spectrum:
  - Good description by NNLO & NLO + NNLL QCD calculations
  - aN<sup>(2,3)</sup>LO prediction show tension at moderate pT<sup>t,lep</sup> with p-value < 0.01 (same trend observed in dilepton channel)</p>





Only Powheg predictions seem to model spectra adequately (MG5\_aMC@NLO  $\rightarrow$  p-values < 0.01)

NEW\*

TOP-16-008

CMS

# ALL-HADRONIC MEASUREMENTS

NEW RESULTS ON 13 TEV

\*





#### Event selection / reconstruction

anti- $k_t$  jets (R =0.4) with  $p_T > 25$  GeV,  $|\eta| < 2.5$ anti-k<sub>t</sub> large jets (R = I.0, trimmed[rsub = 0.2,  $p_T^{sub}/p_T^{large} < 5\%$ ] with  $p_T > 300$  GeV,  $|\eta| < 2.0$ 

lepton veto



- Data-driven QCD background estimation (5CR, IVR)  $\rightarrow$  clean channel
- Comparisons to NLO MC generators
- Dominant uncertainties

| Large- $R$ jets              | +18 / -15 |
|------------------------------|-----------|
| Monte Carlo signal modelling | $\pm 17$  |
| b-tagging                    | +13 / -12 |
| Pileup                       | $\pm 2.9$ |
| Luminosity                   | $\pm 2.9$ |
| Small- $R$ jets              | $\pm 1.0$ |
| Total Systematic Uncertainty | +29 / -24 |
|                              |           |





#### **Overview**

13 TeV all-hadronic 14.7/fb

#### particle level

fiducial phase space absolute & normalized

#### boosted

| p <sub>T</sub> t1     | р  | T <sup>t2</sup>  | y <sup>t1</sup>                  |
|-----------------------|----|------------------|----------------------------------|
| y <sup>t2</sup>       | ١y | ∕ <sup>tT</sup>  | m <sup>t</sup> t                 |
| $p_T^{t\overline{t}}$ | Н  | ⊤ <sup>t</sup> t | $\Delta \varphi^{t\overline{t}}$ |
| $y_B^{t\overline{t}}$ | 7  | ₹tt              |                                  |
| lcosθ*l               |    | р <sub>Тои</sub> | t <sup>t</sup>                   |



### 13 TeV | particle level



- Good agreement for leading and sub-leading top  $p_T$  (sensitive to ~I TeV)
- $t\overline{t}$  system produced with modest  $p_T$  slowly falling  $m^{t\overline{t}} \rightarrow$  good agreement with SM



### 13 TeV | particle level



- Good agreement for leading and sub-leading top  $p_T$  (sensitive to ~I TeV)
- $t\overline{t}$  system produced with modest  $p_T$  slowly falling  $m^{t\overline{t}} \rightarrow$  good agreement with SM

### ATLAS: MC MODELLING STUDIES

- Studies complement <u>PUB-2016-016</u>, <u>PUB-2016-004</u> & <u>PUB-2015-002</u>
- Comparison between unfolded ATLAS data and various MC generator predictions
  - 7, 8, 13 TeV RIVET routines
- Improve modelling of data through development of new MC generator configurations
  - Optimization of Powheg + {Pythia8, Herwig7}
    - Tune intrinsic merging and matching parameters



- Comparisons of
  - Variation of scales and tune
  - Different parton shower interfaces
  - Different NLO generators including NLO multileg generator



 $\rightarrow$  A. Knue poster

### SUMMARY & TAKE HOME MESSAGES

#### Broad range of differential $t\bar{t}$ cross-section measurements at full LHC energy range

- Analyses with pseudo-top, particle, and parton provide variety of interfaces to theory
- 13 TeV results complement 7 and 8 TeV measurements in all decay channels
- Enough statistics to perform differential measurements in dilepton channel at 7, 8, 13 TeV
- L+jets & all-hadronic channels exploit boosted reconstruction techniques
  - New systematic sources and evaluations become important

### Take home messages

- Entering era of double differential measurements at the LHC
- Extension of resolved measurements with increasing data
- Probing high top  $p_T$  regimes using boosted decay topologies
- Measurements show discriminating power between MC models and tuning parameters

### Outlook

- MC tuning studies on-going
- Looking forward to seeing ATLAS and CMS plots super-imposed or compared
- More to come, 13 TeV results with 2016 data





### THANKS FOR YOUR ATTENTION





### N(N)LO PREDICTIONS AT 13 TEV





### 13 TeV | parton level

- NNLO and Powheg+Py8 describe  $p_T^{t\bar{t}}$  better than other tested predictions
- NNLO & NLO+NNLL predictions model the softer top  $p_T$  spectrum more accurately
  - Consistent with 7 and 8 TeV ATLAS and CMS measurements

### **CMS**: DILEPTON

| Systematic          | Median of   | Median of           | Median of                  | Maximum of |
|---------------------|-------------|---------------------|----------------------------|------------|
| uncertainty         | $p_T^t$ [%] | $p_T^{	ext{t}}$ [%] | $\Delta \phi^{tar{t}}$ [%] | median [%] |
| Trigger             | 1           | 1                   | 1                          | 1          |
| Pileup              | 1           | 1                   | 1                          | 1          |
| Lepton SF           | 1           | 1                   | 1                          | 1          |
| JES                 | 1           | 1                   | 1                          | 2          |
| JER                 | 2           | 1                   | 1                          | 2          |
| b jet SF            | 1           | 2                   | 1                          | 2          |
| Background          | 3           | 3                   | 4                          | 6          |
| $\mu_F$ and $\mu_R$ | 1           | 4                   | 5                          | 5          |
| MC modelling        | 3           | 7                   | 12                         | 12         |
| Top quark mass      | 1           | 4                   | 5                          | 5          |
| Hadronisation       | 6           | 4                   | 2                          | 6          |
| PDF                 | 1           | 1                   | 1                          | 2          |

 $\begin{array}{c|c} & & & & & \\ \hline \textbf{DP-16-007} \\ & & & & \\ \hline \textbf{August 4, 16} \end{array} \end{array}$ 

 $m^{t\overline{t}}$ 

 $\Delta\varphi^{t\overline{t}}$ 

CMS

MC modelling, Powheg/MG5\_aMC@NLO

### ATLAS: 13TEV, L+JETS, PARTICLE LEVEL



| Level                                                                                                                             |                                                                             | Detector                                                                                                                                                                                                                                                                                              | Particle                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Topology                                                                                                                          | Resolved                                                                    | Boosted                                                                                                                                                                                                                                                                                               |                                                                                                          |
| Leptons $ d_0/\sigma(d_0)  < 5$ a<br>Track-Calo-bas<br>$ \eta  < 1.37 \text{ or } 1.5$<br>$E_{\rm T}$ (e), $p_{\rm T}$ ( $\mu$ )> |                                                                             | and $ z_0 \sin \theta  < 0.5 \text{ mm}$<br>sed Isolation<br>$52 <  \eta  < 2.47 \ (e) \  \eta  < 2.5 \ (\mu)$<br>> 25 GeV                                                                                                                                                                            | $ \eta  < 2.5$<br>$p_{\rm T} > 25 {\rm GeV}$                                                             |
| $p_{\rm T} > 25 \text{ GeV}$ Small-R jets $ \eta  < 2.5$ JVT cut (if $p_{\rm T} < 60 \text{ GeV}$                                 |                                                                             | < 60 GeV and $ \eta $ < 2.4)                                                                                                                                                                                                                                                                          | $ \eta  < 2.5$<br>$p_{\rm T} > 25 {\rm GeV}$                                                             |
| Num of small- <i>R</i> jets                                                                                                       | $\geq$ 4 jets                                                               | $\geq 1$ jets                                                                                                                                                                                                                                                                                         |                                                                                                          |
| $E_{\mathrm{T}}^{\mathrm{miss}}, m_{\mathrm{T}}^{W}$                                                                              |                                                                             | same as detector level                                                                                                                                                                                                                                                                                |                                                                                                          |
| Leptonic top                                                                                                                      |                                                                             | At least one small- <i>R</i> jet<br>with $\Delta R(\ell, \text{ small-}R \text{ jet}) < 2.0$                                                                                                                                                                                                          |                                                                                                          |
| Hadronic top                                                                                                                      | kinematic top quark<br>reconstruction<br>for detector<br>and particle level | the leading- $p_{\rm T}$ trimmed large- $R$ jet has:<br>$300 \text{ GeV} < p_{\rm T} < 1500 \text{ GeV}, m > 50 \text{ GeV},$<br>TopTagging at 80% efficiency<br>$\Delta R(\text{large-}R \text{ jet}, \text{ small-}R \text{ jet}) > 1.5,$<br>$\Delta \phi(\ell, \text{ small-}R \text{ jet}) > 1.0$ | <b>Boosted:</b><br>$300 < p_T < 1500 \text{ GeV}$<br>Top-tagging:<br>m > 100  GeV,<br>$\tau_{32} < 0.75$ |
| <i>b</i> -tagging at least 2 <i>b</i> -tagged jets                                                                                |                                                                             | at least one of:<br>1) the leading- $p_T$ small- $R$ jet with<br>$\Delta R(\ell, \text{ small-} R \text{ jet}) < 2.0 \text{ is } b\text{-tagged}$<br>2) at least one small- $R$ jet with<br>$\Delta R(\text{large-} R \text{ jet}, \text{ small-} R \text{ jet}) < 1.0 \text{ is } b\text{-tagged}$   | ghost-matched<br><i>B</i> -hadron                                                                        |

August 1, 16

34

### **CMS**: 13 TEV, L + JETS

| <b>M 3</b> : 13                                                              | IEV          | , L + J   | EIS          |            |              |                         |    | <u>TOP-16-008</u>                                     |
|------------------------------------------------------------------------------|--------------|-----------|--------------|------------|--------------|-------------------------|----|-------------------------------------------------------|
| rticle level                                                                 | · · · · · ·  | · – ،     |              |            |              |                         |    | September 2                                           |
| Distribution                                                                 | $\chi^2/dof$ | p-value   | $\chi^2/dof$ | p-value    | $\chi^2/dof$ | p-value                 |    | Overview                                              |
|                                                                              | POW          | VHEG+P8   | POW          | VHEG+H++   | MG5_         | AMC@NLO+P8 MLM          |    | 13 TeV                                                |
|                                                                              | Ord          | ler: NLO  | Or           | der: NLO   | Order: I     | O, up to 3 add. parton  | s  | l+iets                                                |
| $p_{\mathrm{T}}(\mathrm{t_h})$                                               | 14.3/9       | 0.111     | 26.3/9       | < 0.01     | 34.9/9       | < 0.01                  |    | 2.3/fb                                                |
| $ y(t_h) $                                                                   | 4.76/7       | 0.690     | 7.61/7       | 0.368      | 9.08/7       | 0.247                   |    |                                                       |
| $p_{\mathrm{T}}(t_{\ell})$                                                   | 22.9/9       | < 0.01    | 40.8/9       | < 0.01     | 54.6/9       | < 0.01                  |    | parton level                                          |
| $ y(t_\ell) $                                                                | 7.14/7       | 0.415     | 10.6/7       | 0.156      | 18.2/7       | 0.011                   |    | full phase space                                      |
| $M(t\bar{t})$                                                                | 9.25/8       | 0.322     | 173/8        | < 0.01     | 13.4/8       | 0.100                   |    |                                                       |
| $p_{\mathrm{T}}(\mathrm{t}\mathrm{t})$                                       | 2.31/5       | 0.805     | 39.6/5       | < 0.01     | 48.9/5       | < 0.01                  |    |                                                       |
| $ y(t\bar{t}) $                                                              | 1.37/6       | 0.967     | 2.44/6       | 0.876      | 14.5/6       | 0.025                   |    | absolute & normal                                     |
| Additional jets                                                              | 27.6/5       | < 0.01    | 16.2/5       | < 0.01     | 36.3/5       | < 0.01                  |    |                                                       |
| Additional jets vs. $p_{\rm T}(t\bar{t})$                                    | 70.3/20      | < 0.01    | 95.4/20      | < 0.01     | 168/20       | < 0.01                  |    | received                                              |
| Additional jets vs. $p_{\rm T}(t_{\rm h})$                                   | 96.2/36      | < 0.01    | 218/36       | < 0.01     | 180/36       | < 0.01                  |    | resolved                                              |
| $ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$ | 60.1/36      | < 0.01    | 212/36       | < 0.01     | 128/36       | < 0.01                  |    | וט                                                    |
| $M(t\bar{t})$ vs. $ y(t\bar{t}) $                                            | 28.2/24      | 0.251     | 280/24       | < 0.01     | 41.2/24      | 0.016                   |    | p⊤ <sup>t</sup> ly <sup>t</sup> l                     |
| $p_{\rm T}({\rm t\bar{t}})$ vs. $M({\rm t\bar{t}})$                          | 16.7/32      | 0.988     | 465/32       | < 0.01     | 97.6/32      | < 0.01                  |    |                                                       |
|                                                                              | MG5_AN       | AC@NLO+P8 | MG5_AN       | AC@NLO+H++ | MG5_         | AMC@NLO+P8 FXFX         |    | p <sup>re</sup> ly <sup>ee</sup>                      |
|                                                                              | Ord          | ler: NLO  | Or           | der: NLO   | Order: N     | LO, up to 2 add. partor | ns | 2D                                                    |
| $p_{\rm T}({ m t_h})$                                                        | 13.1/9       | 0.159     | 6.85/9       | 0.653      | 5.05/9       | 0.830                   |    | p <sub>T</sub> <sup>t,had</sup> vs.ly <sup>t,ha</sup> |
| $ y(t_h) $                                                                   | 9.91/7       | 0.194     | 13.5/7       | 0.060      | 8.12/7       | 0.322                   |    |                                                       |
| $p_{\mathrm{T}}(\mathfrak{t}_{\ell})$                                        | 13.4/9       | 0.147     | 8.02/9       | 0.533      | 7.97/9       | 0.538                   |    | Iy <sup>rt</sup> IvS.M <sub>tt</sub>                  |
| $ y(t_{\ell}) $                                                              | 14.3/7       | 0.045     | 7.24/7       | 0.404      | 15.9/7       | 0.026                   |    | p⊤ <sup>tT</sup> vs.M <sub>tT</sub>                   |
| $M(t\bar{t})$                                                                | 10.9/8       | 0.206     | 34.2/8       | < 0.01     | 33.0/8       | < 0.01                  |    |                                                       |
| $p_{\rm T}({ m t\bar{t}})$                                                   | 40.0/5       | < 0.01    | 7.65/5       | 0.177      | 27.8/5       | < 0.01                  |    |                                                       |
| $ y(t\bar{t}) $                                                              | 2.72/6       | 0.843     | 2.77/6       | 0.837      | 3.58/6       | 0.733                   |    |                                                       |
| Additional jets                                                              | 36.2/5       | < 0.01    | 15.7/5       | < 0.01     | 10.8/5       | 0.056                   |    |                                                       |
| Additional jets vs. $p_{\rm T}(t\bar{t})$                                    | 237/20       | < 0.01    | 192/20       | < 0.01     | 87.2/20      | < 0.01                  |    |                                                       |
| Additional jets vs. $p_{\rm T}(t_{\rm h})$                                   | 251/36       | < 0.01    | 76.0/36      | < 0.01     | 45.6/36      | 0.132                   |    |                                                       |
| $ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$ | 48.9/36      | 0.074     | 100/36       | < 0.01     | 49.1/36      | 0.071                   |    |                                                       |
| $M(t\bar{t}) vs.  y(t\bar{t}) $                                              | 25.1/24      | 0.403     | 53.4/24      | < 0.01     | 56.7/24      | < 0.01                  |    |                                                       |
| $p_{\rm T}({\rm tf})$ vs. $M({\rm tf})$                                      | 133/32       | < 0.01    | 157/32       | < 0.01     | 109/32       | < 0.01                  |    |                                                       |

NEW\*

mtt

### **CMS**: 13 TEV, L + JETS

| Parton loval | Distribution                                                                 | $x^2/dof$ | n-value         | $x^2/dof$ | n-value         | $x^2/dof$     | n-value                  |   | September 23, 10                                                       |
|--------------|------------------------------------------------------------------------------|-----------|-----------------|-----------|-----------------|---------------|--------------------------|---|------------------------------------------------------------------------|
| Farton level | Distribution                                                                 |           | p-value         | χ / αυ    |                 | χ /uoi<br>MC5 | AMC@NI O+P8 MI M         |   | Overview                                                               |
|              |                                                                              | Ord       | er: NLO         | Or        | der: NLO        | Order: 1      | O up to 3 add, partons   |   |                                                                        |
|              | $p_{\rm T}(t_{\rm b})$                                                       | 12.0/9    | 0.216           | 9.43/9    | 0.398           | 20.5/9        | 0.015                    |   | 10 ToV                                                                 |
|              | $ \psi(t_{\rm h}) $                                                          | 5.02/7    | 0.657           | 5.59/7    | 0.589           | 5.81/7        | 0.562                    |   | 13 160                                                                 |
|              | $p_{\rm T}(t_{\ell})$                                                        | 18.1/9    | 0.034           | 10.9/9    | 0.285           | 48.5/9        | < 0.01                   |   | l+iets                                                                 |
|              | $ y(t_{\ell}) $                                                              | 13.2/7    | 0.067           | 15.2/7    | 0.034           | 14.0/7        | 0.051                    |   | $\frac{1}{2}$                                                          |
|              | $M(t\bar{t})$                                                                | 6.08/8    | 0.639           | 11.6/8    | 0.172           | 48.1/8        | < 0.01                   |   | 2.3/10                                                                 |
|              | $p_{\rm T}({\rm t}{\rm t})$                                                  | 1.35/5    | 0.930           | 5.53/5    | 0.354           | 18.3/5        | < 0.01                   |   | parton level                                                           |
|              | $ y(t\bar{t}) $                                                              | 2.35/6    | 0.885           | 2.43/6    | 0.876           | 5.85/6        | 0.440                    |   | full phase space                                                       |
|              | Additional jets                                                              | 9.55/5    | 0.089           | 6.47/5    | 0.263           | 5.71/5        | 0.335                    |   | abooluto 2 pormalizad                                                  |
|              | Additional jets vs. $p_{T}(t\bar{t})$                                        | 90.6/20   | < 0.01          | 144/20    | < 0.01          | 145/20        | < 0.01                   |   |                                                                        |
|              | Additional jets vs. $p_{\rm T}(t_{\rm h})$                                   | 108/36    | < 0.01          | 49.5/36   | 0.067           | 84.2/36       | < 0.01                   |   | particle level                                                         |
|              | $ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$ | 59.4/36   | < 0.01          | 57.3/36   | 0.014           | 67.2/36       | < 0.01                   |   | fiducial phase space                                                   |
|              | $M(t\bar{t}) vs.  y(t\bar{t}) $                                              | 20.4/24   | 0.674           | 19.6/24   | 0.719           | 51.5/24       | < 0.01                   |   | absolute & normalized                                                  |
|              | $p_{\rm T}({ m t\bar{t}})$ vs. $M({ m t\bar{t}})$                            | 15.8/32   | 0.993           | 27.8/32   | 0.679           | 109/32        | < 0.01                   |   |                                                                        |
|              |                                                                              | MG5_AN    | AC@NLO+P8       | MG5_AN    | AC@NLO+H++      | MG5_          | AMC@NLO+P8 FXFX          |   |                                                                        |
|              |                                                                              | Ord       | ler: NLO        | Or        | der: NLO        | Order: N      | LO, up to 2 add. partons |   | resolved                                                               |
|              | $p_{\rm T}(t_{\rm h})$                                                       | 11.6/9    | 0.240           | 16.8/9    | 0.052           | 10.6/9        | 0.301                    |   | 1D                                                                     |
|              | $ y(\mathbf{t}_{\mathbf{h}}) $                                               | 6.91/7    | 0.438           | 6.85/7    | 0.444           | 5.23/7        | 0.632                    |   |                                                                        |
|              | $p_{\rm T}(t_{\ell})$                                                        | 18.7/9    | 0.028           | 32.4/9    | < 0.01          | 14.6/9        | 0.102                    |   | p⊤ <sup>t</sup>  v <sup>t</sup>                                        |
|              | $ y(t_{\ell}) $                                                              | 19.1/7    | < 0.01          | 12.7/7    | 0.079           | 18.7/7        | < 0.01                   |   |                                                                        |
|              | M(tt)                                                                        | 11.5/8    | 0.186           | 0.09/0    | 0.582           | 29.0/0        | < 0.01                   |   | n <sup>tt</sup> lv <sup>tt</sup> l m <sup>tt</sup>                     |
|              | $p_{\rm T}(t)$                                                               | 40.0/5    | < 0.01<br>0.808 | 25.6/5    | < 0.01<br>0.866 | 286/6         | < 0.01<br>0.826          |   |                                                                        |
|              | Additional jets                                                              | 199/5     | < 0.01          | 4 37/5    | 0.000           | 6 78 /5       | 0.220                    |   | 2D                                                                     |
|              | Additional jets vs. $n_{\rm T}(t\bar{t})$                                    | 390/20    | < 0.01          | 294/20    | < 0.01          | 127/20        | < 0.01                   | I | p_t.hadvc_lvt.hadl                                                     |
|              | Additional jets vs. $p_{\rm T}(t_{\rm b})$                                   | 112/36    | < 0.01          | 49.0/36   | 0.072           | 56.5/36       | 0.016                    |   | plana vs.lyana l                                                       |
|              | $ y(t_{\rm h}) $ vs. $p_{\rm T}(t_{\rm h})$                                  | 91.8/36   | < 0.01          | 123/36    | < 0.01          | 53.1/36       | 0.033                    |   | $b_{t} \overline{t} b_{t} c_{t} M -$                                   |
|              | $M(t\bar{t})$ vs. $ y(t\bar{t}) $                                            | 29.8/24   | 0.192           | 19.2/24   | 0.741           | 38.7/24       | 0.030                    |   | Iy VIVS. Mitt                                                          |
|              | $p_{\rm T}({\rm t\bar{t}})$ vs. $M({\rm t\bar{t}})$                          | 275/32    | < 0.01          | 78.2/32   | < 0.01          | 104/32        | < 0.01                   |   | $\mathbf{D}^{\dagger} \mathbf{T}_{\mathbf{N}} \mathbf{O} \mathbf{M} =$ |
|              |                                                                              | app       | r. NNLO         | app       | r. NNNLO        |               | NLO+NNLL'                |   | pt <sup>ee</sup> vs.M <sub>tt</sub>                                    |
|              | $p_{\rm T}({ m t_h})$                                                        | 25.3/9    | < 0.01          | 69.1/9    | < 0.01          | 9.68/9        | 0.377                    |   |                                                                        |
|              | $ y(\mathbf{t}_{\mathbf{h}}) $                                               | 8.90/7    | 0.260           | 4.78/7    | 0.686           | -             | -                        |   |                                                                        |
|              | $p_{\mathrm{T}}(t_{\ell})$                                                   | 23.1/9    | < 0.01          | 189/9     | < 0.01          | 4.41/9        | 0.882                    |   |                                                                        |
|              | $ y(t_\ell) $                                                                | 6.40/7    | 0.494           | 7.28/7    | 0.400           | -             | -                        |   |                                                                        |
|              | $M(t\bar{t})$                                                                | -         | -               | -         | -               | 12.2/8        | 0.143                    |   |                                                                        |
|              |                                                                              | 1         | NNLO            |           |                 |               |                          |   |                                                                        |
|              | $p_{\rm T}({\rm t_h})$                                                       | 9.40/9    | 0.402           |           |                 |               |                          |   |                                                                        |
|              | $ y(t_h) $                                                                   | 4.08/7    | 0.770           |           |                 |               |                          |   |                                                                        |
|              | $p_{\mathrm{T}}(\mathbf{t}_{\ell})$                                          | 10.8/9    | 0.291           |           |                 |               |                          |   |                                                                        |
|              | $ y(t_{\ell}) $                                                              | 10.4/7    | 0.168           |           |                 |               |                          |   |                                                                        |
|              | M(tt)                                                                        | 11.2/8    | 0.190           |           |                 |               |                          |   |                                                                        |
|              | $p_{\rm T}({\rm tt})$                                                        | 4.61/5    | 0.466           |           |                 |               |                          |   |                                                                        |
|              | y(tt)                                                                        | 2.26/6    | 0.894           |           |                 |               |                          |   |                                                                        |

NEW\*

<u>TOP-16-008</u>

September 23, 16

mtt

CMS

#### **QCD** estimation

- A,B,C, G & H, number of observed events after substraction of  $t\bar{t}$  and singletop production
- Validation region F

$$S_{\text{bg}} = \frac{1}{2} \left( \frac{G}{A} + \frac{H}{B} \right) \times C_{\text{s}}$$



150

100

50

200



13 TeV all-hadronic 14.7/fb

#### particle level

fiducial phase space absolute & normalized

#### boosted

| p <sub>T</sub> t1     | p <sub>T</sub> t2      | y <sup>t1</sup>                  |
|-----------------------|------------------------|----------------------------------|
| ly <sup>t2</sup> l    | ly <sup>tī</sup> l     | m <sup>t</sup> t                 |
| $p_T^{t\overline{t}}$ | H⊤ <sup>t₹</sup>       | $\Delta \varphi^{t\overline{t}}$ |
| $y_B^{t\overline{t}}$ | $\chi^{t\overline{t}}$ |                                  |
| lcos0*                | l p <sub>Tor</sub>     | utt                              |



### **CMS:** ALL-HADRONIC

Measurement complements <u>arXiv:1509.06076</u> (accepted for Eur. Phys. J. C) Event selection / reconstruction

anti-k<sub>t</sub> jets (R =0.4) with  $p_T > 30$  GeV,  $|\eta| < 2.4$ anti-k<sub>t</sub> large jets (R =0.8, softdrop[ $z_{cut} = 0.1, \beta=0$ ] with  $p_T > 200$  GeV,  $|\eta| < 2.4, m_{softdrop} = 50$  GeV

lepton veto

| Reso | lved | channel   |
|------|------|-----------|
|      |      | Circuitte |

 $\geq$ 6 small-R jets ( $\geq$ 2 b-tagged)

 $PT^{(6)} > 45 \text{ GeV}, \Delta R(b,b) > 2.0$ 

H⊤ > 500 GeV

kinematic fit prob. > 0.02

 $150 < m_t < 200 \text{ GeV}$ 

- Comparison to LO & NLO MC generator
- Dominant uncertainties
  - Parton level
    - QCD bgr modelling at low pT
    - JES, b-tagging





#### NEW CMS: ALL-HADRONIC CMS TOP-16-013 Measurement complements arXiv: 1509.06076 (accepted for Eur. Phys. J. C) Event selection / reconstruction **Overview** anti-k<sub>t</sub> jets (R =0.4) with $p_T > 30$ GeV, $|\eta| < 2.4$ 13 TeV anti-k<sub>t</sub> large jets (R =0.8, softdrop[ $z_{cut} = 0.1, \beta=0$ ] with $p_T > 200$ GeV, $|\eta| < 2.4, m_{softdrop} = 50$ GeV all-hadronic 2.53/fb lepton veto parton level full phase space **Resolved channel Boosted channel** absolute resolved $\geq$ 6 small-R jets ( $\geq$ 2 b-tagged) $\geq 2$ large-R jets (both contain b-tagged jet) boosted $p_{T}^{(1)} > 450 \text{ GeV}$ $p_{T}^{(6)} > 45 \text{ GeV}, \Delta R(b,b) > 2.0$ p⊤<sup>t</sup> $150 < m^{(1)}_{SD} < 200 \text{ GeV}$ $H_{T} > 500 \text{ GeV}$ kinematic fit prob. > 0.02 $\mathcal{F}$ > 0 [build from $\tau_{32 \&} \tau_{31}$ of leading jets] $150 < m_t < 200 \text{ GeV}$ absolute 2.53 fb<sup>-1</sup> (13 TeV) 2.5 **Ratio to Powheg** CMS Parton level Preliminary Comparison to LO & NLO MC generator Data (resolved) Data (boosted) Dominant uncertainties Stat. & Bkg. Unc. Extrap. Unc. Parton level aMC@NLO 1.5 Madgraph QCD bgr modelling at low pt • JES, b-tagging

0.5

200

400

600

800

1000

Leading top  $p_{\tau}$  (GeV)

- Limited by the stat. uncertainty above ~500 GeV
- Agreement between resolved & boosted

1200

### $U\,{}^{N}\,{}^{F}\,{}^{O}\,{}^{L}\,{}^{D}\,{}^{I}\,{}^{N}\,{}^{G}$

- Iterative Bayesian method (D'Agostini) [Nucl. Instrum. Meth. A362 (1995) 487-498]
  - Used to correct detector level events to the fiducial phase space

$$\frac{\mathrm{d}\sigma^{\mathrm{fid}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\int \mathcal{L}\,\mathrm{d}t \cdot \Delta X^{i}} \cdot \frac{1}{\epsilon_{\mathrm{eff}}^{i}} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{\mathrm{acc}}^{j} \cdot \left(N_{\mathrm{reco}}^{j} - N_{\mathrm{bg}}^{j}\right)$$

- Subtraction of background from detector level observable
- Acceptance correction f<sub>acc</sub> is applied to account for events generated outside the fiducial phase space but pass the detector acceptance, spatial matching of detector level and particle level objects to account for resolution and combinatorial effects
- Correction for events that pass the particle level selection but are not reconstructed at detector level, ε<sub>eff</sub>
- Migration matrix derived from simulated events maps particle level events to detector-level events (j(i); bins in X at detector level (particle level))



### $U\,\,{\tt N}\,{\tt F}\,\,{\tt O}\,{\tt L}\,\,{\tt D}\,{\tt I}\,{\tt N}\,\,{\tt G}$

- Unfolding to parton level
  - ▷ Account for both the detector response and parton shower and hadronization → introduces large theoretical uncertainties
  - Correct for events only representing respective top decay channel
- 2D unfolding
  - Generalization of D'Agostini unfolding with n bins on one and m bins in the other measured observable.
    - Using vector with  $n^*m$  entries
    - Migration matrix (n \* m) x (n\*m)

### TOP-PROXY RECONSTRUCTION (PSEUDO-TOP)

#### Reconstruction of $t\bar{t}$ pair using well defined objects at particle level

Run same algorithm on particle and detector level



#### 2. Define pseudo-top system

• e.g.:

How-to

• e.g. l+jets:

- two hardest b jets belong to pseudo-top pair system
- Define the leptonic W by combining the lepton with the ETmiss and solving for pz assuming the W mass (highest pz from two-fold ambiguity)
- ▶ the b jet closer to lepton ( $\Delta R$ ) is part of the leptonic top decay
- $\triangleright$  the two remaining jets that are not b-tagged with highest p<sub>t</sub> are the hadronically decaying W and combine with left b-tagged jet
- Unfolding to particle level  $\rightarrow$  allow for comparison to MC generator predictions



#### **Picture courtesy:**

- https://ixquick-proxy.com/do/spg/show\_picture.pl
- <u>www.elegrity.com</u>
- <u>https://build-your-own-particle-detector.org/</u>
- <u>http://atlas.physicsmasterclasses.org/</u>

