New results on top-quark mass in ATLAS

Kaven Yau Wong On behalf of: The ATLAS Collaboration

9th International Workshop on Top Quark Physics Olomouc, 19-23 September 2016

Outline

Introduction

Top-quark mass measurements

- Dilepton channel
- All-hadronic channel

Summary

Introduction

Why should we measure the top-quark mass?

- It is a free parameter of the Standard Model (SM)
 - Produces a significant contribution to electroweak radiative corrections
 - A precise measurement is important for many models of physics beyond the SM
- Its value is important for the consistency of the SM

Experimental measurements in $t\bar{t}$

- Traditionally measured in the single lepton channel
- The dilepton and all-hadronic channels are also competitive
- Most precise measurements are for the "Monte-Carlo mass"

Introduction

Earlier top-quark mass measurements:

• LHC+Tevatron combination in 2014

• Two ATLAS measurements in 2015 (7 TeV)

Template method

- universität**bonn**
- Determine an observable that depends on the top-quark mass
- Model the distribution of this observable as a function of the top-quark mass with the help of Monte Carlo simulations
- Use this template to fit the data and measure the top-quark mass

Using the template method:

- Data: 20.2 fb⁻¹, $\sqrt{s} = 8$ TeV
- Signal MC: Powheg-Box Pythia6 with P2011C tune and CTEQ6L1 PDF

Chosen observable: $m_{\ell b}$

• Defined as the average invariant masses of the lepton-*b*-jet systems

Event preselection:

- Exactly two opposite-sign reconstructed leptons with $p_{\rm T} > 25~{\rm GeV}$
- At least one trigger-matched lepton
- At least two reconstructed central jets with $p_{\rm T} > 25~{\rm GeV}$
- At least one of the reconstructed jets must be *b*-tagged (70% efficiency)
- For the *ee* and $\mu\mu$ channels:
 - $\circ E_{\rm T}^{\rm miss} > 60 \, {
 m GeV}$
 - $\circ m_{\ell\ell} > 15 \text{ GeV}$
 - $|m_{\ell\ell} m_Z| > 10 \text{ GeV}$
- For the $e\mu$ channel:
 - The scalar sum of the transverse momentum of all reconstructed jets and leptons (H_T) must be larger than 130 GeV

Additional cuts:

- The average transverse momentum of the two lepton-*b*-jet pairs ($p_{T,\ell b}$) must be larger than 120 GeV
- 30 GeV < $m_{\ell b}$ < 170 GeV

Phys. Lett. B761 (2016) 350-371

Final selection:

Event yields:

Selection	Pre-selection		Final selection	
$t\bar{t}$ signal	$34300 \pm$	2700	9670 \pm	770
Single-top-quark signal	$1690~\pm$	110	$363~\pm$	23
Fake leptons	$240~\pm$	240	$31 \pm$	31
Z+jets	$212~\pm$	83	$20.6~\pm$	8.5
WW/WZ/ZZ	$57 \pm$	21	$10.2~\pm$	3.8
Signal+background	$36600 \pm$	2800	$10100 \pm$	770
Data	36359		9426	
Expected background fraction	$0.01~\pm$	0.01	$0.01~\pm$	0.00
Data / (Signal+background)	$0.99~\pm$	0.07	$0.93~\pm$	0.07
Matching efficiency [%]	78.4 \pm	0.2	$95.3 \pm$	0.4
Selection purity [%]	$51.6~\pm$	0.1	$69.8~\pm$	0.3
Unmatched events $[\%]$	$34.2 \pm$	0.1	$26.7~\pm$	0.1
Wrongly matched events $[\%]$	14.2 \pm	0.1	$3.4~\pm$	0.0

Template used:

- Signal: Gaussian + Landau
- Background: Landau
- Template is parametrised using only the top-quark mass

Phys. Lett. B761 (2016) 350-371

Results:

 $m_{\rm top} = 172.99 \pm 0.41 \text{ (stat.)} \pm 0.74 \text{ (syst.)}$ GeV, ($\sigma_{\rm total} = 0.49\%$)

Most precise measurement of the top-quark mass in the dilepton channel to date!

Uncertainties:

	$\sqrt{s} = 7$	$\sqrt{s} = 8 \text{ TeV}$	
	$m_{\rm top}^{\ell+{\rm jets}}$ [GeV]	$m_{\rm top}^{\rm dil} \; [{\rm GeV}]$	$m_{\rm top}^{\rm dil} \ [{\rm GeV}]$
Results	172.33	173.79	172.99
Statistics	0.75	0.54	0.41
Method	0.11 ± 0.10	0.09 ± 0.07	0.05 ± 0.07
Signal Monte Carlo generator	0.22 ± 0.21	0.26 ± 0.16	0.09 ± 0.14
Hadronisation	0.18 ± 0.12	0.53 ± 0.09	0.22 ± 0.08
Initial- and final-state QCD radiation	0.32 ± 0.06	0.47 ± 0.05	0.23 ± 0.05
Underlying event	0.15 ± 0.07	0.05 ± 0.05	0.10 ± 0.11
Colour reconnection	0.11 ± 0.07	0.14 ± 0.05	0.03 ± 0.11
Parton distribution function	0.25 ± 0.00	0.11 ± 0.00	0.05 ± 0.00
Background normalisation	0.10 ± 0.00	0.04 ± 0.00	0.03 ± 0.00
W/Z+jets shape	0.29 ± 0.00	0.00 ± 0.00	0
Fake leptons shape	0.05 ± 0.00	0.01 ± 0.00	0.08 ± 0.00
Jet energy scale	0.58 ± 0.11	0.75 ± 0.08	0.54 ± 0.04
Relative b -to-light-jet energy scale	0.06 ± 0.03	0.68 ± 0.02	0.30 ± 0.01
Jet energy resolution	0.22 ± 0.11	0.19 ± 0.04	0.09 ± 0.03
Jet reconstruction efficiency	0.12 ± 0.00	0.07 ± 0.00	0.01 ± 0.00
Jet vertex fraction	0.01 ± 0.00	0.00 ± 0.00	0.02 ± 0.00
b-tagging	0.50 ± 0.00	0.07 ± 0.00	0.03 ± 0.02
Leptons	0.04 ± 0.00	0.13 ± 0.00	0.14 ± 0.00
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.04 ± 0.03	0.01 ± 0.01
Pile-up	0.02 ± 0.01	0.01 ± 0.00	0.05 ± 0.01
Total systematic uncertainty	1.03 ± 0.31	1.31 ± 0.23	0.74 ± 0.25
Total	1.27 ± 0.33	1.41 ± 0.24	0.84 ± 0.25

Hadronisation: (Powheg-Box) (Pythia6 vs Herwig+Jimmy) ISR/FSR: Vary Λ_{QCD} , Q_{max}^2 and h_{damp}

Combination:

	$\sqrt{s} = 7 \text{ TeV}$		$\sqrt{s} = 8$ TeV	Correlations		Combinations			
	$m_{\rm top}^{\ell+{\rm jets}}$ [GeV]	$m_{ m top}^{ m dil} \ [{ m GeV}]$	$m_{\rm top}^{\rm dil} \; [{\rm GeV}]$	$ ho_{01}$	$ ho_{02}$	$ ho_{12}$	$m_{\rm top}^{7 {\rm TeV}} [{\rm GeV}]$	$m_{ m top}^{ m dil} \; [{ m GeV}]$	$m_{\rm top}^{\rm all} \ [{\rm GeV}]$
Results	172.33	173.79	172.99				172.99	173.04	172.84
Statistics	0.75	0.54	0.41	0	0	0	0.48	0.38	0.34
Method	0.11 ± 0.10	0.09 ± 0.07	0.05 ± 0.07	0	0	0	0.07	0.05	0.05
Signal Monte Carlo generator	0.22 ± 0.21	0.26 ± 0.16	0.09 ± 0.14	+1.00	+1.00	+1.00	0.24	0.10	0.14
Hadronisation	0.18 ± 0.12	0.53 ± 0.09	0.22 ± 0.08	+1.00	+1.00	+1.00	0.34	0.24	0.23
Initial- and final-state QCD radiation	0.32 ± 0.06	0.47 ± 0.05	0.23 ± 0.05	-1.00	-1.00	+1.00	0.04	0.24	0.08
Underlying event	0.15 ± 0.07	0.05 ± 0.05	0.10 ± 0.11	-1.00	-1.00	+1.00	0.06	0.10	0.02
Colour reconnection	0.11 ± 0.07	0.14 ± 0.05	0.03 ± 0.11	-1.00	-1.00	+1.00	0.01	0.03	0.01
Parton distribution function	0.25 ± 0.00	0.11 ± 0.00	0.05 ± 0.00	+0.57	-0.29	+0.03	0.17	0.04	0.08
Background normalisation	0.10 ± 0.00	0.04 ± 0.00	0.03 ± 0.00	+1.00	+0.23	+0.23	0.07	0.03	0.04
W/Z+jets shape	0.29 ± 0.00	0.00 ± 0.00	0	0			0.16	0.00	0.09
Fake leptons shape	0.05 ± 0.00	0.01 ± 0.00	0.08 ± 0.00	+0.23	+0.20	-0.08	0.03	0.07	0.05
Jet energy scale	0.58 ± 0.11	0.75 ± 0.08	0.54 ± 0.04	-0.23	+0.06	+0.35	0.41	0.52	0.41
Relative <i>b</i> -to-light-jet energy scale	0.06 ± 0.03	0.68 ± 0.02	0.30 ± 0.01	+1.00	+1.00	+1.00	0.34	0.32	0.25
Jet energy resolution	0.22 ± 0.11	0.19 ± 0.04	0.09 ± 0.03	-1.00	0	0	0.03	0.08	0.08
Jet reconstruction efficiency	0.12 ± 0.00	0.07 ± 0.00	0.01 ± 0.00	+1.00	+1.00	+1.00	0.10	0.01	0.04
Jet vertex fraction	0.01 ± 0.00	0.00 ± 0.00	0.02 ± 0.00	-1.00	+1.00	-1.00	0.00	0.02	0.02
b-tagging	0.50 ± 0.00	0.07 ± 0.00	0.03 ± 0.02	-0.77	0	0	0.25	0.03	0.15
Leptons	0.04 ± 0.00	0.13 ± 0.00	0.14 ± 0.00	-0.34	-0.52	+0.96	0.05	0.14	0.09
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.15 ± 0.04	0.04 ± 0.03	0.01 ± 0.01	-0.15	+0.25	-0.24	0.08	0.01	0.05
Pile-up	0.02 ± 0.01	0.01 ± 0.00	0.05 ± 0.01	0	0	0	0.01	0.05	0.03
Total systematic uncertainty	1.03 ± 0.31	1.31 ± 0.23	0.74 ± 0.25				0.77	0.74	0.61
Total	1.27 ± 0.33	1.41 ± 0.24	0.84 ± 0.25	-0.07	0.00	0.51	0.91	0.84	0.70

 $m_{\rm top} = 172.84 \pm 0.34$ (stat.) ± 0.61 (syst.) GeV, ($\sigma_{\rm total} = 0.40\%$)

All-hadronic channel

Using the template method:

- Data: 20.2 fb⁻¹, $\sqrt{s} = 8$ TeV
- Signal MC: Powheg-Box Pythia6 with Perugia2012 tune and CT10 PDF

Event selection:

- No reconstructed leptons
- At least 6 reconstructed jets with $p_T > 25$ GeV
- At least 5 reconstructed jets with $p_T > 60$ GeV
- $E_{\rm T}^{\rm miss} < 60 {
 m GeV}$
- At least 2 of the 6 leading- p_T jets must be *b*-tagged (57% efficiency)
- $\Delta \phi(b_1, b_2) > 1.5$
 - b_1 , b_2 are the two jets most-likely to have originated from a *b*-quark

ATLAS-CONF-2016-064

$t\bar{t}$ reconstruction:

$$\chi^{2} = \frac{(m_{b_{1}j_{1}j_{2}} - m_{b_{2}j_{3}j_{4}})^{2}}{\sigma_{\Delta m_{bjj}}^{2}} + \frac{(m_{j_{1}j_{2}} - m_{W}^{\text{MC}})^{2}}{\sigma_{m_{W}}^{2}} + \frac{(m_{j_{3}j_{4}} - m_{W}^{\text{MC}})^{2}}{\sigma_{m_{W}}^{2}}$$

- $\Delta m_{bjj} = m_{b_1 j_1 j_2} m_{b_2 j_3 j_4}$
- $\sigma_{\Delta m_{bjj}} = 21.60 \pm 0.16 \text{ (stat.) GeV}$
- $m_W^{\rm MC} = 81.18 \pm 0.04$ (stat.) GeV
- $\sigma_{m_W^{\rm MC}} = 7.89 \pm 0.05 \text{ (stat.) GeV}$
- Try each combination and choose the one with the lowest χ^2

Further event selection requirements:

- $\min(\chi^2) < 11$
- $\Delta\phi(b,W) < 2$
 - $\Delta \phi(b, W)$: average separation of the *W*-boson candidates and their associated *b*-tagged jet

Multi-jet background estimation:

• Estimated using a data-driven method (ABCD method)

ABCD Region and Definition		nd Definition	Estimated Signal Fraction		
Region	$\mid N_{b_{\mathrm{tag}}}$	$\langle \Delta \phi(b,W) \rangle$	$t\bar{t}$ MC/data [%]		
A	<2	≥ 2.0	2.06 ± 0.02		
В	<2	< 2.0	2.60 ± 0.02		
С	≥ 2	≥ 2.0	24.71 ± 0.55		
D	≥ 2	< 2.0	34.05 ± 0.57		

$$N_{\text{background},i}^{\text{SR D}} = \left(\frac{N_{\text{background}}^{\text{CR C}}}{N_{\text{background}}^{\text{CR A}}}\right) N_{\text{background},i}^{\text{CR B}}$$

Multi-jet background estimation uncertainty:

- Alternative regions: ABCDEF
 - Regions A, C and E are used to estimate the normalization
 - Regions B and D are used to estimate the shape
 - Region F is the signal region

$$N_F^{\rm bkg}(x) = \frac{N_E^{\rm bkg}}{2} \cdot \left(\frac{N_B^{\rm bkg}(x)}{N_A^{\rm bkg}} + \frac{N_D^{\rm bkg}(x)}{N_C^{\rm bkg}}\right)$$

• The difference between the measured top mass using the ABCD and the ABCDEF methods is 0.16 GeV

All-hadronic channel

ATLAS-CONF-2016-064

universität**bonn** erc

Expected purity: 34%

All-hadronic channel

ATLAS-CONF-2016-064

universität**bonn** erc

- Two $R_{3/2}$ per event
- Correlation between them: 0.59

Template used:

- Signal: Novosibirsk
- Background: Landau
- Template depends on the top-quark mass and the background fraction parameter ($F_{\rm bkgd}$)

ATLAS-CONF-2016-064

Results:

 $m_{\rm top} = 173.80 \pm 0.55$ (stat.) ± 1.01 (syst.) GeV, ($\sigma_{\rm total} = 0.66\%$)

ATLAS-CONF-2016-064

Uncertainties:

Uncertainty	$\Delta m_{\rm top} \ [GeV]$
Monte Carlo generator	0.18 ± 0.21
Hadronisation modelling	0.64 ± 0.15
Parton distribution functions	0.04 ± 0.00
Initial/final-state radiation	0.10 ± 0.28
Underlying event	0.13 ± 0.16
Colour reconnection	0.12 ± 0.16
Bias in template method	0.06
Signal and bkgd parameterisation	0.09
Non all-hadronic $t\bar{t}$ contribution	0.06
ABCD method vs. ABCDEF method	0.16
Trigger efficiency	0.08 ± 0.01
$Lepton/E_T^{miss}$ calibration	0.02 ± 0.01
Overall flavour tagging	0.10 ± 0.00
Jet energy scale (JES)	0.60 ± 0.05
b-Jet energy scale (bJES)	0.34 ± 0.02
Jet energy resolution	0.10 ± 0.04
Jet vertex fraction	0.03 ± 0.01
Total Systematic	1.01
Total Statistical	0.55
Total	1.15

Hadronisation: (Powheg-Box) (Pythia6 vs Herwig)

Summary

Trigger:

• Single electron or muon trigger ($p_{\rm T} > 24 \text{ GeV}$)

Electron candidates:

• $E_{\rm T} > 25$ GeV and $|\eta| < 2.47$

Muon candidates:

• $p_{\rm T} > 25$ GeV and $|\eta| < 2.5$

Jet candidates:

- Built using the anti- k_t jet clustering algorithm with a radius parameter of R = 0.4
- $p_{\rm T} > 25$ GeV and $|\eta| < 2.5$

Flavor tagging:

• MV1 *b*-tagging algorithm at 70% efficiency

Trigger:

• At least 5 jets with $p_T > 55$ GeV

Electron candidates:

• $E_{\rm T} > 25$ GeV and $|\eta| < 2.5$

Muon candidates:

• $p_{\rm T} > 25$ GeV and $|\eta| < 2.5$

Jet candidates:

- Built using the anti- k_t jet clustering algorithm with a radius parameter of R = 0.4
- $p_{\mathrm{T}} > 25$ GeV and $|\eta| < 2.5$

Flavor tagging:

• MV1 *b*-tagging algorithm at 57% efficiency

Function forms

Gaussian:

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Landau:

• $f(x) = \frac{1}{\pi} \int_0^\infty e^{-t \cdot \ln t - xt} \sin(\pi t) dt$

Novosibirsk:

•
$$f(x) = Ae^{-0.5 \left\{ \ln^2 \left(\frac{1+q_x \Lambda_\tau}{\tau^2} \right) + \tau^2 \right\}}$$

•
$$q_x = \frac{(x-x_0)}{\sigma}$$

•
$$\Lambda_\tau = \frac{\tau \cdot \sinh(\tau \sqrt{\ln 4})}{\tau \sqrt{\ln 4}}$$