New results on top-quark mass, including new methods, from the Tevatron

on behalf of the CDF and D0 collaborations

Outline

- Introduction
- Matrix element method in lepton+jets (D0)
- All-hadronic top mass measurement (CDF)
- MET+jets (CDF)
- Tevatron top mass combination
- Dilepton channel
 - D0
 - CDF
- Pole mass from cross-section (D0)
 - Inclusive and differential
- Conclusions
- Cover most recent and sensitive results in this talk
- All results presented use the full Run II dataset
 9-10 fb⁻¹

Purpose of top quark mass measurement

- Self-consistency of the standard model
- Stability of the universe

- Develop detailed understanding
 - Of detector
 - Of theoretical top quark modeling

Tevatron, CDF and D0

- 1.96 TeV
- 10 fb⁻¹ of protonantiproton collision data

lepton+jets: Matrix Element Method

 Use full event kinematic information by applying matrix element method

$$P_{\text{sig}} = \frac{1}{\sigma_{\text{obs}}^{t\bar{t}}(m_t, k_{\text{JES}})} \int \sum d\sigma(\vec{y}, m_t) d\vec{q}_1 d\vec{q}_2 f(\vec{q}_1) f(\vec{q}_2) \times W(\vec{x}, \vec{y}; k_{\text{JES}})$$

- Define likelihood from matrix elements (dσ), PDF (f), transfer functions (W) (parton<-> jets)
- Integrate over unmeasured quantities
- CPU demanding
- 2D measurement of jet energy calibration factor and top quark mass

Phys. Rev. Lett. 113, 032002 (2014) PRD 91, 112003 (2015)

top quark mass (m_,) [GeV]

lepton+jets: Matrix Element Method

• Largest systematic uncertainties:

Effect on m_t (GeV)
g:
+0.15
+0.26
± 0.21
jets ± 0.16

 Precise top quark mass measurement:

$$m_t = 174.98 \pm 0.58 \text{ (stat.)} \pm 0.49 \text{ (syst) GeV}$$

 $m_t = 174.98 \pm 0.76 \text{ (total) GeV}$ 0.43% relative uncertainty

Phys. Rev. Lett. 113, 032002 (2014)

Details and checks in PRD:
 PRD 91, 112003 (2015)

All-jet measurement

- Event selection

 - 1-3 b-tags
 - MET significance cut + NN discrimination
- Background modeling:
 - Pretag sample times b-tagging rate
 - Use correction factors for multiple
 b-quarks per events from background
 dominated samples (inverse NN cut)
 - All possible combinations are taken into account
- Top quark mass from template fit to m_{top}^{rec} and m_W^{rec} in data

Phys.Rev. D90 (2014) 9, 091101

All-jet measurement

 2D measurement of jet energy calibration factor and top quark mass

Largest systematic uncertainties:		2 1.5 ≥ 1-tag events (9.3 fb ⁻¹)
Source	$\sigma_{M_{\mathrm{top}}}$	- -
	(GeV/c^2)	0.5
Generator (hadronization)	0.29	
Parton distribution functions	$^{+0.18}_{-0.36}$	0 - (*)
Color reconnection	0.32	
$\Delta_{ m JES}$ fit	0.97	-0.5 × Fitted values
Other free parameters of the fit	0.41	
Templates sample size	0.34	-1
Residual JES	0.57	-1.5 -1.5 -1.5
		168 170 172 174 176 178
		M _{top} [GeV/c ²]

 $M_{\rm top} = 175.07 \pm 1.19 \, ({\rm stat}) \, {}^{+1.55}_{-1.58} ({\rm syst}) \, {\rm GeV}/c^2$

1.1% relative uncertainty

Phys.Rev. D90 (2014) 9, 091101

MET+jets

- Event selection similar to lepton+jets
- Except: No identified leptons
 - MET significance $> 3 \text{ GeV}^{1/2}$
 - 4-6 jets
 - topological cuts + NN discriminant cut
 - Use b-tagging to classify events
- Top reconstruction procedure similar to lepton+jets
- Largest systematic uncertainties:

Source Uncertainty (GeV/c^2)

Residual jet-energy scale 0.44

MC generator 0.36

Color reconnection 0.28

gg fraction 0.27

Radiation 0.28

 $M_{top} = 173.93 \pm 1.64 \text{ (stat+JES)} \pm 0.87 \text{ (syst) GeV}$

PRD (R) 88 011101 (2013)

1.1% relative uncertainty

Dilepton neutrino weighting

- 2 leptons, $p_T > 15 \text{ GeV}$
- 2 jets, 1 b-jet
- Backgrounds from Z+jets,
 Dibosons, instrumental
- For each event, scan m_thypothesized to calculate a weight w for each possibility for the momenta of the two neutrinos:

$$\omega = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=x,y} \exp \left(-\frac{(\cancel{E}_{T_{j,i}}^{\text{calc}} - \cancel{E}_{T_{j}}^{\text{obs}})^2}{2\sigma_{\cancel{E}_{T_{j}}^{u}}^2} \right)$$

- First two moments of w distribution give top mass sensitivity (μ_w , σ_w)
 - Comprehensive optimization of method parameters

PLB 757, 199 (2016)

Neutrino weighting measurement

 Apply jet energy calibration from lepton+jets measurement

Largest systematic uncertainties:

Source	σ_{m_t} [GeV]
Jet energy calibration	
Absolute scale	∓ 0.47
Flavor dependence	∓ 0.27
Residual scale	$^{+0.36}_{-0.35}$
Signal modeling	
Higher-order effects	-0.33
Color reconnection	-0.22

$$m_t = 173.32 \pm 1.36 ({\rm stat}) \pm 0.85 ({\rm syst}) \; {\rm GeV}$$

0.9% relative uncertainty

Most precise Tevatron dilepton measurement

arXiv:1508.03322

Dilepton matrix element

- 2 leptons, $p_T > 15$ GeV
- 2 jets, 1 b-jet
 - $-p_T > 20 \text{ GeV}$
- Backgrounds from Z+jets,
 Dibosons, instrumental
- Same matrix element calculation as in lepton+jets
 - But MET ambiguity
 - Requires additional integration

Calibration for top mass and statistical uncertainty

PRD 94, 032004 (2016)

Dilepton matrix element result

• JES constraint from lepton+jets measurement

Dominant systematic uncertainties

Source	Uncertainty (GeV)
Signal and background modeling:	
Higher order corrections	+0.16
ISR/FSR	± 0.16
Hadronization and UE	+0.31
Detector modeling:	
Residual jet energy scale	-0.20
Uncertainty on $k_{\rm JES}$ factor	∓ 0.46
Flavor dependent jet response	∓0.30
Total systematic uncertainty	±0.88
Total statistical uncertainty	± 1.61
Total uncertainty	±1.84

$$m_t = 173.93 \pm 1.61 \text{ (stat)} \pm 0.88 \text{ (syst) GeV}$$

PRD 94, 032004 (2016)

Dilepton combination

- Combination of 2 results:
 - Neutrino weighting
 - Matrix element
- Different selection cuts
- Same sources of systematic uncertainty
- Correlation from pseudo-experiments

 $m_t = 173.50 \pm 1.31({\rm stat}) \pm 0.84({\rm syst}) \; {\rm GeV}$

0.9% relative uncertainty

D0 note 6484

New D0 combination

- Update since 2011
 - New lepton+jets measurements
 - New dilepton measurements

0.4% relative uncertainty

Dilepton measurement

- Event selection
 - 2 leptons $p_T > 20 \text{ GeV}$
 - MET > 25 GeV
 - $-H_T > 200 \text{ GeV}$
 - Z veto and topological cuts
- Reconstruct effective top quark mass

$$M^{\text{hyb}} = w \cdot M_t^{\text{reco}} + (1 - w) \cdot M_{\ell b}^{\text{alt}}$$

- w is optimized (=0.6)
- M^{reco} is mass from neutrino weighting
- Malt is alternative, less JES dependence

$$M_{\ell b}^{\text{alt}} = c^2 \sqrt{\frac{\langle \ell_1, b_1 \rangle \cdot \langle \ell_2, b_2 \rangle}{E_{b_1} \cdot E_{b_2}}}$$

Dilepton measurement

Largest systematic uncertainties:

Systematic uncertainties (GeV/c²)

Jet-energy scale	2.2
NLO effects	0.7
Monte Carlo generators	0.5

 $M_{top} = 171.5 \pm 1.9 \text{ (stat)} \pm 2.5 \text{ (syst)} \text{ GeV/c}^2$

PRD 92 032003 (2015)

Tevatron top quark mass combination

First new combination since 2014

- Central value decreases by 40 MeV
- Total uncertainty unchanged:650 MeV

Mass of the Top Quark

 m_t (GeV/c²)

 $m_{\rm t} = 174.30 \pm 0.35 \, ({\rm stat}) \pm 0.54 \, ({\rm syst}) \, {\rm GeV}^{150}$

Reinhard Schwienhorst

Pole mass from inclusive cross-section

Cross-section measurement in lepton+jets and dileptons

$$\sigma_{t\bar{t}} = 7.26 \pm 0.13 \, (\text{stat.}) \, ^{+0.57}_{-0.50} \, (\text{syst.}) \, \text{pb}$$

- Repeat measurement with varying input top quark mass
 - Changing acceptance, kinematics
- Compared to NNLO+NNLL prediction
 - Avoids theoretical interpretation issues
 - MC mass vs pole mass
- Result for pole mass:

$$m_t = 172.8^{+3.4}_{-3.2} \,(\text{tot.})\,\text{GeV}$$

D0 9.7 fb⁻¹ Measured $\sigma(p\bar{p}\rightarrow t\bar{t}+X)$ Measured dependence of σ NNLO+NNLL 160 170 180 Top quark pole mass (GeV)

arXiv:1605.06168

2.0% relative uncertainty

Pole mass from differential cross-section

- Top quark momentum distribution is sensitive to pole mass
- Invariant mass of top-antitop system is sensitive to pole mass
- Theoretically well-defined mass measurement
- Improvement upon extraction from total cross-section by using differential distributions
- Lepton+jets decay mode
- Compare differential distributions to NNLO QCD calculation
 - M. Czakon, D. Fiedler, D. Heymes and A. Mitov are paper authors
 - NLO and NNLO, 4 different PDF sets
- Compare to unfolded differential distributions
 - PRD 90 092006 (2014)
 - Reduced luminosity uncertainty

Differential distributions

Result

- Chi-squared fit to both distributions: p_T vs m_{tt}
 - Use full 2d correlation matrix
 - Correlation factor 0.12
- Experimental uncertainty 2 GeV, theo uncertainty 1 GeV
- Fit result: (169.1 ± 2.5 GeV)

1.5% relative uncertainty

 smaller than pole mass from inclusive cross-section due to no NNLL corrections and larger lepton+jets cross-section

Conclusions

- Final Tevatron top quark mass results are now being published
 - Based on 10 fb⁻¹
- All top quark decay modes are covered
 - Highest precision in lepton+jets
 - Tevatron combination has uncertainty of 650 MeV
- Measurements of both MC mass and of pole mass

- Tevatron top quark mass measurements are still competitive with LHC measurements
 - Well-understood datasets, well-modeled detectors
 - Sophisticated analysis techniques
 - Work ongoing to understand difference D0-CMS in lepton+jets

Backup slides

Tevatron combination uncertainties

- 650 MeV uncertainty
- 0.37%
- $\bullet \chi_2 = 10.8/11$
- prob = 46%

Tevatron combined values	(GeV/c^2)
$M_{ m t}$	174.30
In situ light-jet calibration (iJES)	0.31
Response to $b/q/g$ jets (aJES)	0.11
Model for b -jets (bJES)	0.10
Out-of-cone correction (cJES)	0.03
Light-jet response (1) (rJES)	0.05
Light-jet response (2) (dJES)	0.14
Lepton modeling (LepPt)	0.01
Signal modeling (Signal)	0.36
Jet modeling (DetMod)	0.05
b-tag modeling (b -tag)	0.07
Background from theory (BGMC)	0.04
Background based on data (BGData)	0.07
Calibration method (Method)	0.07
Offset (UN/MI)	0.00
Multiple interactions model (MHI)	0.06
Systematic uncertainty (syst)	0.54
Statistical uncertainty (stat)	0.35
Total uncertainty	0.65

Mass measurement summary

m _t ^{pole} extractions (b) D0 Preliminary, 9.7fb ⁻¹			
NLO vs. dσ/dX [This article]	-	167.3 ± 2.6	
NNLO vs. d σ/dX [This article]	•—	169.1 ± 2.5	
D0 (NNLO+NNLL $\sigma_{ ext{tot}}$) [arXiv:1605.06168]	——	172.8 ± 3.3	
ATLAS (<i>tt+1j</i>) [JHEP 10 (2015)]	——	173.7 ± 2.2	
CMS (NNLO+NNLL σ_{tot} [PLB 728 (2014)]) ——	176.7 ± 2.9	
Direct techniques			
Tevatron average [arxiv:1608.01881]	i ◆i	174.30 ± 0.65	
ATLAS average [arxiv:1606.02179]	iei .	172.84 ± 0.70	
CMS combination [PRD 93 (2016)]	M	172.44 ± 0.49	

165 170 175 Top quark mass [GeV]

Tevatron mass combination 2014

Systematic uncertainties (GeV/c²)

In situ light-jet calibration (iJES) ★	0.31
Response to $b/q/g$ jets (aJES)	0.10
Model for b jets (bJES)	0.10
Out-of-cone correction (cJES)	0.02
Light-jet response (1) (rJES)	0.05
Light-jet response (2) (dJES)	0.13
Lepton modeling (LepPt)	0.07
Signal modeling (Signal)	0.34
Jet modeling (DetMod)	0.03
b-tag modeling (b -tag)	0.07
Background from theory (BGMC)	0.04
Background based on data (BGData)	0.08
Calibration method (Method)	0.07
Offset (UN/MI)	0.00
Multiple interactions model (MHI)	0.06
Systematic uncertainty (syst)	0.52
Statistical uncertainty (stat)	0.37
Total uncertainty	0.64

0.37% relative uncertainty

 $M_{\rm t} = 174.34 \pm 0.37 \, ({\rm stat}) \pm 0.52 \, ({\rm syst}) \, {\rm GeV}/c^2$

arXiv:1407.2682