Institute For Research in Fundamental Sciences School of Particles and Accelerators

Charge Asymmetry Measurements in Top Quark Pair Events

Mohsen Naseri

On behalf of the ATLAS and CMS Collaborations

OLOMOUC, CZECH REPUBLIC

9th International Workshop on Top Quark Physics 19 - 23 September 2016

Top physics Menu

only charge asymmetry results will be shown with a focus on the most recent ones.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Symmetry & Asymmetry

asymmetry = particle-antiparticle asymmetry

A difference in the angular distribution of top quarks with respect to top antiquarks

Symmetry

Asymmetry

Origin of asymmetry

SM predicts no asymmetry at LO in QCD, and a small asymmetry at NLO

A_{FB} @ Tevatron

Tevatron is asymmetric, valence quarks and valence antiquarks of similar momenta collide

$$\bigcirc$$
 qq \rightarrow tt $\overline{} \sim 80\%$

000000

00000

00000

small dilution

SM asymmetry: ~ 8%

A_C @ LHC

- LHC is symmetric,top quarks (anti-quarks) are more forward (central)
- - ----- large dilution

- Direction of incoming quark is not known
- Measured asymmetry disturbed by acceptance and resolution
 need to extrapolate to parton level!
- Significant uncertainty from modeling and extrapolation
- Inclusive measurement of A_C in full phase space and fiducial phase space
- Differential measurements:

A_C vs m_{tt}: expected different behavior for different BSM scenarios

 A_C vs p_{tt} : expected sensitivity comes from negative ISR and FSR interference

 A_C vs $|y_{tt}|$: sensitive to enhancement of asymmetry at higher rapidities (increased quark-antiquark annihilation process)

 $\mathbf{A}_{\mathbf{C}}$ vs $|\mathbf{\beta}_{\mathbf{z},\mathbf{tt}}|$: sensitivity to BSM at high values of $\beta_{\mathbf{z},\mathbf{tt}}$

<u>Semi-leptonic Measurements @ 8TeV</u>

Eur. Phys. J. C76 (2016) 87

- Main background: W+jets
- A kinematic fit assesses the compatibility of the observed event with the decays of a topantitop pair.

Phys. Lett. B 757 (2016) 154

- \bigcirc \geq 1 b-tagged jet
- ~ 60% of total background: W+jets
- Calculate a probability to find the best top pair configuration

$$\psi = L_1(m_1)L_2(m_2)L_3(m_3)P_b(x_{b1})P_b(x_{b2})(1 - P_b(x_{q1}))(1 - P_b(x_{q2}))$$

$$L = \mathcal{B}(\widetilde{E}_{p,1}, \widetilde{E}_{p,2} | m_W, \Gamma_W) \cdot \mathcal{B}(\widetilde{E}_{lep}, \widetilde{E}_{\nu} | m_W, \Gamma_W) \cdot \mathcal{B}(\widetilde{E}_{p,1}, \widetilde{E}_{p,2}, \widetilde{E}_{p,3} | m_t, \Gamma_t) \cdot \mathcal{B}(\widetilde{E}_{lep}, \widetilde{E}_{\nu}, \widetilde{E}_{p,4} | m_t, \Gamma_t) \cdot \mathcal{W}(\hat{E}_{r}^{miss} | \widetilde{p}_{x,\nu}) \cdot \mathcal{W}(\hat{E}_{r}^{miss} | \widetilde{p}_{y,\nu}) \cdot \mathcal{W}(\hat{E}_{lep} | \widetilde{E}_{lep}) \cdot \prod_{i=1}^{4} \mathcal{W}(\hat{E}_{r}^{i}, \widetilde{E}_{p,i}) \cdot \prod_{i=1}^{4} P(\text{tagged } | \text{ parton flavour})$$

TOP2016 Mohsen Naseri

1000 1200 1400 1600 1800 2000

m₊ [GeV]

<u>Unfolding strategy</u>

- Fully Bayesian Unfolding(FBU)
- TLAS The likelihood extended with nuisand parameters
- Unfolding and W+jets BG estimation performed simultaneously
- Measure A_c also as function of M_{tf} , $p_{T,tt}$, $\beta_{z,tt}$

- BG subtracted distributions of $\Delta |y|$ unfolded based on generalized matrix inversion method
- Correction to fiducial volume and full phase space
- Extract asymmetry from unfolded spectra
- \bigcirc Measure A_c also as function of $M_{t\bar{t}}$,

true |∆y|

 $p_{T.tt}$, $|Y_{tt}|$

Prior prob. Of T true level |∆y| $p(T|D) \propto L(D|T).\pi(T)$ response matrix Measured $|\Delta y|$ Likelihood for disturbed observing D given T ΙΔνΙ

TOP2016 Mohsen Naseri

Results from CMS and ATLAS

-0.0035 ± 0.0072 ± 0.0031

CMS, Fiducial

statistically limited, agreement with SM prediction-

Results from CMS and ATLAS

statistically limited, agreement with SM prediction-

Measured inclusive charge asymmetries $\mathbf{A}_{\mathbf{C}}$ at the LHC vs. $\mathbf{A}_{\mathbf{FB}}$ at Tevatron

The uncertainty bands correspond to a 68% confidence level interval.

G μ : A heavy axigluon $\Omega 4$: A colour-sextet scalar

Φ : A scalar isodoublet ω4 : A colour-triplet scalar

Inclusive results from CMS and ATLAS

Phys. Lett. B 760 (2016) 365

		So	reement with s	om prediction
observable		stat	sys	Prediction:
$A^{tar{t}}$	0.011	± 0.011	$\pm \ 0.007$	CMS
\mathbf{A}^{lep}	0.003	± 0.006	$\pm \ 0.003$	CMS
A ^{tt¯}	0.021	± 0.0	016	ATLAS
\mathbf{A}^{lep}	0.008	± 0.0	006	ATLAS
$A^{t\bar{t}}$	0.0111	± 0.0	004	Prediction: Phys. Rev. D 86 (2012) 034026
A^{lep}	0.0064	± 0.0	003	Perdiction: Phys. Rev. D 86 (2012) 034026

Please see Roger Naranjo From ATLAS

differential results from ATLAS

Differential measurements as a function of $m_{t\bar{t}}$, $p_{T,t\bar{t}}$, and $\beta_{z,t\bar{t}}$ both in the full phase space and in a fiducial phase space

Largest uncertainty is statistical, followed by the reconstruction and the signal modeling uncertainties.

TOP2016

differential results from CMS

Phys. Lett. B 760 (2016) 365

1.5

18

Differential measurements as a function of $m_{t\bar{t}}$, $p_{T.t\bar{t}}$, and $|Y_{tt}|$

Largest uncertainty statistical uncertainty

Future measurements at $\sqrt{s} = 13$ TeV with larger data sets expected to have better statistical precision

CMS

Charge asymmetry: template method Phys. Rev. D 93, 034014

Phys. Rev. D 93, 034014 (2016)

Symmetric and asymmetric component of MC template fit to sensitive variable

$$Y_{t\bar{t}} = \tanh(\Delta |y|)$$

- In comparison to unfolding, measured A_c is more precise with significantly smaller stat. uncertainty
- Larger model dependence, reflected in the sys. uncertainty
- Total sys. uncertainty comparable to the stat. uncertainty

Source	$A_{c}^{y}(\%)$	
e+jets	$0.09 \pm 0.34 (stat)$	
μ+jets	$0.68 \pm 0.41 (\mathrm{stat})$	
Combined	$0.33 \pm 0.26 (\mathrm{stat}) \pm 0.33 (\mathrm{syst})$	
POWHEG CT10	0.56 ± 0.09	
MC@NLO	0.53 ± 0.09	
Kühn and Rodrigo [8]	1.02 ± 0.05	
Bernreuther and Si [9]	1.11 ± 0.04	

Boosted measurement in the TeV range

Physics Letters B (2016), Vol. 756, pp. 52-71

Lepton+jets channel

- Improved reconstruction at high energy
- Decay products collimated for boosted top quarks
 - Hadronic decay as a single trimmed jet
 - Leptonic decay as a small-R jet close to lepton single charged lepton

Events with $m_{t\bar{t}} > 750 \text{ GeV}$

- \bigcirc One isolated lepton, $p_T > 25 \text{ GeV}$
- MET>20 GeV
- MET+M_T^W>60 GeV
- one Anti-kT R=1.0, Large-R jet
- Trimmed:rsub=0.3
- \mathbf{P}_{T} >300 GeV
- \bigcirc $M_{jet}^{trim}>100 \text{ GeV}$

Further requirements:

- \bigcirc $\Delta \varphi$ (lep., large-R jet)>2.3
- \bigcirc \triangle R(lep., small-R jet)<1.5
- \bigcirc Δ R(small-R, lage-R)>1.5
- \bigcirc \geq 1 b-tagged jet

Δ|Y| corrected to parton level with Fully bayesian unfolding

Measurement performed in fiducial region

*
$$-2 < \Delta |y| < 2$$
, 750 GeV $< m_{tt}^{-}$

- Differential measurement: 3 interval in m_{tt}-
- Inclusive measurement for $m_{t\bar{t}} > 750 \text{ GeV}$ $A_C = (4.2 \pm 3.2)\%$, less than 1σ from SM prediction of $1.60 \pm 0.04\%$
 - Dominant source of uncertainty: signal modeling and data statistic

Physics Letters B (2016), Vol. 756, pp. 52-71

Almost all results are consistent with SM

Most significant deviation w.r.t. SM, 1.6 σ

$m_{t\bar{t}}$ interval	> 0.75 TeV	0.75 – 0.9 TeV	0.9 – 1.3 TeV	> 1.3 TeV
Measurement	$(4.2 \pm 3.2)\%$	$(2.2 \pm 7.3)\%$	$(8.6 \pm 4.4)\%$	$(-2.9 \pm 15.0) \%$
SM prediction	$(1.60 \pm 0.04)\%$	$(1.42 \pm 0.04)\%$	$(1.75 \pm 0.05)\%$	$(2.55 \pm 0.18)\%$

Physics Letters B (2016), Vol. 756, pp. 52-71

Impact on extension of the SM

- Gμ : A new color-octet neutral vector boson
- W': A charged color-singlet vector boson
- φ : A color-singlet scalar doublet
- \bigcirc $\Omega 4 : A charge 4/3 scalar color sextet$
- ω4 : A charge 4/3 scalar color triplet

- Higher sensitivity for the SM asymmetry
- Constraint on the extension of the SM
- Complementary to other measurements
- Extensions of the SM with heavy particles can predict an enhanced high-mass charge asymmetry at the LHC.

charge and CP asymmetries in b-hadron decays

using top-quark events (ATLAS)

Please see Jacob Julian Kempster talk From ATLAS

Charge and CP asymmetries in b-hadron decays

TOPQ-2016-07

■ LHC as top quark factory allow us to perform, **for the first time**, the measurements of CP asymmetries in heavy flavour mixing and decay from top-quark decay products.

- Select top pair events with exactly one lepton and at least four jets, one of which must be tagged with both a displaced-vertex b-tagging algorithm and the SMT algorithm.
- The charge asymmetries are formed from the charge of the lepton from the top-quark decay and from the charge of the soft muon from the semileptonic decay of a b-hadron.

$$A^{\text{ss}} = \frac{P(b \to \ell^+) - P(\overline{b} \to \ell^-)}{P(b \to \ell^+) + P(\overline{b} \to \ell^-)}, \qquad A^{\text{os}} = \frac{P(b \to \ell^-) - P(\overline{b} \to \ell^+)}{P(b \to \ell^-) + P(\overline{b} \to \ell^+)},$$

$$\begin{split} P\left(b \to \ell^{+}\right) &= \frac{N\left(b \to \ell^{+}\right)}{N\left(b \to \ell^{-}\right) + N\left(b \to \ell^{+}\right)} = \frac{N^{++}}{N^{+-} + N^{++}} = \frac{N^{++}}{N^{+}}, \\ P\left(\overline{b} \to \ell^{-}\right) &= \frac{N\left(\overline{b} \to \ell^{-}\right)}{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)} = \frac{N^{--}}{N^{--} + N^{-+}} = \frac{N^{--}}{N^{-}}, \\ P\left(b \to \ell^{-}\right) &= \frac{N\left(b \to \ell^{-}\right)}{N\left(b \to \ell^{-}\right) + N\left(b \to \ell^{+}\right)} = \frac{N^{+-}}{N^{+-} + N^{++}} = \frac{N^{+-}}{N^{+}}, \\ P\left(\overline{b} \to \ell^{+}\right) &= \frac{N\left(\overline{b} \to \ell^{+}\right)}{N\left(\overline{b} \to \ell^{-}\right) + N\left(\overline{b} \to \ell^{+}\right)} = \frac{N^{-+}}{N^{--} + N^{-+}} = \frac{N^{-+}}{N^{-}}, \end{split}$$

 $N^{\alpha\beta}$ represent the number of SMT muons observed with a charge β in conjunction with a W-boson lepton of charge $\alpha.$

Charge and CP asymmetries in b-hadron decays

TOPQ-2016-07

The CP asymmetries related to $B_q - \bar{B_q}$ mixing and direct CP violating b- and c-decays are

defined as:

$$A_{\text{mix}}^{b\ell} = \frac{\Gamma\left(b \to \overline{b} \to \ell^{+}X\right) - \Gamma\left(\overline{b} \to b \to \ell^{-}X\right)}{\Gamma\left(b \to \overline{b} \to \ell^{+}X\right) + \Gamma\left(\overline{b} \to b \to \ell^{-}X\right)},$$

$$A_{\text{mix}}^{bc} = \frac{\Gamma\left(b \to \overline{b} \to \overline{c}X\right) - \Gamma\left(\overline{b} \to b \to cX\right)}{\Gamma\left(b \to \overline{b} \to \overline{c}X\right) + \Gamma\left(\overline{b} \to b \to cX\right)},$$

$$A_{\text{dir}}^{b\ell} = \frac{\Gamma\left(b \to \ell^{-}X\right) - \Gamma\left(\overline{b} \to \ell^{+}X\right)}{\Gamma\left(b \to \ell^{-}X\right) + \Gamma\left(\overline{b} \to \ell^{+}X\right)},$$

$$A_{\text{dir}}^{c\ell} = \frac{\Gamma\left(\overline{c} \to \ell^{-}X_{L}\right) - \Gamma\left(c \to \ell^{+}X_{L}\right)}{\Gamma\left(\overline{c} \to \ell^{-}X_{L}\right) + \Gamma\left(c \to \ell^{+}X_{L}\right)},$$

$$A_{\text{dir}}^{bc} = \frac{\Gamma\left(b \to cX_{L}\right) - \Gamma\left(\overline{b} \to \overline{c}X_{L}\right)}{\Gamma\left(b \to cX_{L}\right) + \Gamma\left(\overline{b} \to \overline{c}X_{L}\right)},$$

The observed charge asymmetries can be used with decay fractions to extract the various CP asymmetries.

$$\begin{split} N_{r_{b}} &= N \left[t \to \ell^{+} \nu \left(b \to \overline{b} \right) \to \ell^{+} \ell^{+} X \right], \\ N_{r_{c}} &= N \left[t \to \ell^{+} \nu \left(b \to c \right) \to \ell^{+} \ell^{+} X \right], \\ N_{r_{c\overline{c}}} &= N \left[t \to \ell^{+} \nu \left(b \to \overline{b} \to c\overline{c} \right) \to \ell^{+} \ell^{+} X \right], \\ N_{\widetilde{r}_{b}} &= N \left[t \to \ell^{+} \nu b \to \ell^{+} \ell^{-} X \right], \\ N_{\widetilde{r}_{c}} &= N \left[t \to \ell^{+} \nu \left(b \to \overline{b} \to \overline{c} \right) \to \ell^{+} \ell^{-} X \right], \\ N_{\widetilde{r}_{c\overline{c}}} &= N \left[t \to \ell^{+} \nu \left(b \to c\overline{c} \right) \to \ell^{+} \ell^{-} X \right]. \end{split}$$

Charge and CP asymmetries in b-hadron decays

TOPQ-2016-07

- Backgrounds subtracted from the data, unfolded to a well-defined fiducial region where the charge asymmetries are measured.
- The observed charge asymmetries found to be compatible with zero

	Data	(10^{-2})	MC (10^{-2}	Existing limits $(2\sigma) (10^{-2})$	SM prediction
A^{ss}	-0.7	± 0.8	0.05	± 0.23	-	$< 10^{-4}$
A^{os}	0.4	± 0.5	-0.03	± 0.13	-	$< 10^{-4}$ $< 10^{-5}$
A_{mix}^{b}	-2.5	± 2.8	0.2	± 0.7	< 0.1	$< 10^{-5}$
$A_{ m dir}^{b\ell} \ A_{ m dir}^{c\ell}$	0.5	± 0.5	-0.03	± 0.14	< 1.2	$< 10^{-7}$
$A_{\mathrm{dir}}^{c\ell}$	1.0	± 1.0	-0.06	± 0.25	< 6.0	$< 10^{-11}$ $< 10^{-9}$
$A_{ m dir}^{bc}$	-1.0	± 1.1	0.07	± 0.29	-	$< 10^{-9}$

- Both the data and the MC are compatible with the SM expectations,
- The dominant uncertainty on all asymmetry measurements reported is statistical.

TOP2016

Mohsen Naseri

CP-violation asymmetry @ CMS

- First measurement at the LHC of CP-violation asymmetries in tt¯ events
- In the SM, CP-violation effects very small but enhanced by BSM
- Measure asymmetry with 4 T-odd triple product observables (O_i) using the composition of momenta of tt⁻+jets events

$$CP(O_i) = -O_i$$

■ The background-subtracted distributions of the observables used to compute the asymmetry A_{CP} :

$$A_{CP}\left(O_{i}\right) = \frac{N_{events}\left(O_{i} > 0\right) - N_{events}\left(O_{i} < 0\right)}{N_{events}\left(O_{i} > 0\right) + N_{events}\left(O_{i} < 0\right)},$$

 \blacksquare Any non-zero A_{CP} would be already a strong hint of new physics

<u>CP-violation asymmetry @ CMS</u>

TOP-16-001

- The measured asymmetries show no evidence for CP-violation effects in tt events within uncertainties
- Most of the systematic effects are canceled in the A_{CP} measurement
- The total uncertainty dominated by the statistical component -The systematic uncertainty lower than 1% of the total uncertainty

tension observed for the combined A_{CP} (O_3), at 2σ -level

$A_{CP}^{\prime}\left(O_{i}\right)$	e+jets	μ+jets	ℓ+jets
O_2	$-0.01 \pm 0.61 \pm 0.01$	$+0.50 \pm 0.56 \pm 0.02$	$+0.27 \pm 0.41 \pm 0.01$
O_3	$-0.34 \pm 0.61 \pm 0.02$	$-1.03 \pm 0.56 \pm 0.04$	$-0.71 \pm 0.41 \pm 0.03$
O_4	$-0.24 \pm 0.61 \pm 0.02$	$-0.49 \pm 0.56 \pm 0.04$	$-0.38 \pm 0.41 \pm 0.03$
O ₇	$-0.42 \pm 0.61 \pm 0.00$	$+0.46 \pm 0.56 \pm 0.01$	$-0.06 \pm 0.41 \pm 0.01$

The first (second) uncertainty is of statistical (systematic) nature. The values quoted are in %.

Mohsen Naseri TOP2016

Where we are and where we are going?

- ATLAS report the first experimental measurement of A^{bc}_{dir} strengthens the existing 2 σ limit on $A^{c\ell}_{dir}$ and present an equivalent 2 σ limit on $A^{b\ell}_{dir}$.
- Run 2 can probe some accessible regions of BSM models via more precise measurements or highly boosted events
- Future measurements at $\sqrt{s} = 13$ TeV with larger data sets are expected to have better statistical precision
- With higher statistics, profit from associated productions (tt+W/photon/jet) to probe further A_c

TOP2016

Backup

Mohsen Naseri TOP2016

From Tevatron to LHC

Tevatron is asymmetric, valence quarks collide with valence anti quarks

New physics may increase asymmetry

TOP2016

Origin of asymmetry

SM predicts no asymmetry at **LO in QCD**, and a small asymmetry **at NLO**.

(+) Interference between Born and box diagrams leads to a positive asymmetry value

(-) Interference between ISR and FSR diagrams leads to a negative asymmetry value

Mohsen Naseri TOP2016

Origin of asymmetry

Could new physics be responsible to increase the charge asymmetry?

- Many theoretical models include new particles changing SM asymmetry prediction
- Interference between SM and new physics amplitudes can give sensitivity

t-channel mediator:

Exotic flavor changing vector bosons

s-channel mediator:

Interference between SM QCD and exotic gluons with axial coupling

Mohsen Naseri TOP2016

From Tevatron to LHC

Tevatron is asymmetric, valence quarks collide with valence anti quarks

► Forward-backward asymmetry

LHC is symmetric, valence quarks collide with sea anti quarks

► No forward-backward asymmetry

at LHC top quarks tend to be more forward than anti tops in the lab frame.

37 Jhr

<u>Semi-leptonic Measurements @ 8TeV</u>

Eur. Phys. J. C76 (2016) 87

Event Selection

- One isolated lepton, $p_T > 25$ GeV, $|\eta_c| < 2.47(e), |\eta| < 2.5(\mu)$
- \bigcirc \geq 4 jets with $p_T > 25$ GeV and $|\eta| < 2.5$
- \bigcirc Event separated by: $0,1, \ge 2$ b-tag jets
- Arr MET + $m_T^W > 60$ GeV for 0,1 b-tag events, MET > 40 (20) GeV for 0 (1) b-tag events
- Main background: W+jets
- Signal in 1(≥2) b-tag region: ~68% (89%) 0f total yield

Phys. Lett. B 757 (2016) 154

Event Selection

- One isolated lepton, $p_T > 30$ GeV (e), 26 GeV (μ), $|\eta| < 2.5$ (e), $|\eta| < 2.1$ (μ)
- \bigcirc \geq 4 jets with $p_T > 30$ GeV and $|\eta| < 2.5$
- \bigcirc \geq 1 b-tagged jet
- m_T^W used in fit to constrain QCD background

Mohsen Naseri TOP2016

Di-leptonic Measurements @ 8TeV

charge asymmetry measured by: pseudorapidity of the leptons or the rapidity of the top quarks.

Phys. Rev. D 94, 032006 (2016)

Event Selection

- \bigcirc e-e, μ - μ , e- μ channels
- Two isolated leptons, $p_T > 25$ GeV, $|\eta_{cl}| < 2.47$ (e) |m| < 2.7 $|\eta_{cl}| < 2.47(e), |\eta| < 2.5(\mu)$
- $\bigcirc \ge 2$ jets with $p_T > 25$ GeV and $|\eta| < 2.5$
- $|m_{11} m_{Z_1}| > 10 \text{ GeV}(e-e, \mu-\mu)$
- $H_T > 130 \text{ GeV}(e-\mu)$
- \bigcirc Signal Regions \geq 1b-tag(e-e, μ - μ)
- \bigcirc MET > 30 GeV(e-e, μ - μ)
- Background: 15% of total yield
- Main background: Drell-Yan, single top

Phys. Lett. B 760 (2016) 365

Event Selection

- e-e, μ-μ, e-μ channels
- \bigcirc Two isolated lepton, $p_T > 20$ GeV, $|\eta| < 2.4$

- $|m_{11} m_{7}| > 15 \text{GeV (e-e, } \mu \mu)$
- Signal region with ≥1b-tag
- \bigcirc MET > 40 GeV(e-e, μ - μ)
- Background: 9% of total yield
- Main background: Drell-Yan, single top

Charge asymmetry: template method Phys. Rev. D 93, 034014

(2016)

Electron(muon)+jets channel

- A template technique based on a parametrization of the SM
- Symmetric and asymmetric component of MC template fit to sensitive variable

$$Y_{t\bar{t}} = \tanh(\Delta |y|)$$

$$\rho(Y_{t\bar{t}}) = \frac{1}{\sigma} \frac{d\sigma}{dY} \begin{cases} \rho^{\pm}(Y_{t\bar{t}}) = [\rho(Y_{t\bar{t}}) \pm \rho(-Y_{t\bar{t}})]/2 \\ \rho(\alpha) = \rho^{+} + \alpha \rho^{-} \qquad A_{C}^{Y} = \alpha \hat{A}_{C}^{Y} \end{cases}$$

$$\hat{A}_C^Y = 2 \int \rho^- dY$$

base model charge asymmetry

40

Template fit to the reconstructed $Y_{t\bar{t}\text{-,rec}}$ distribution to extract α parameter

Mohsen Naseri **TOP2016**

Charge asymmetry: template method

Phys. Rev. D 93, 034014 (2016)

Template fit to the reconstructed $Y_{tt,rec}$ distribution to extract α parameter

$$\rho(\alpha) = \rho^+ + \alpha \rho^- \qquad A_C^Y = \alpha \hat{A}_C^Y$$

Charge asymmetry: template method Phys. Rev. D 93, 034014

(2016)

Symmetric and asymmetric component of MC template fit to sensitive variable

$$Y_{t\bar{t}} = \tanh(\Delta |y|)$$

- Total sys. uncertainty comparable to the stat. uncertainty
- Measured A_c compatible with unfolding method but significantly smaller stat. uncertainty
- Larger model dependence, reflected in the sys. uncertainty
- Sys. uncertainty dominated by the statistical uncertainty in the templates,
 - will be reduced through increased numbers of events

Source	$A_c^y(\%)$	
e+jets	$0.09 \pm 0.34 (stat)$	
μ +jets	$0.68 \pm 0.41 (\mathrm{stat})$	
Combined	$0.33 \pm 0.26 (\mathrm{stat}) \pm 0.33 (\mathrm{syst})$	
POWHEG CT10	0.56 ± 0.09	
MC@NLO	0.53 ± 0.09	
Kühn and Rodrigo [8]	1.02 ± 0.05	
Bernreuther and Si [9]	1.11 ± 0.04	

Boosted measurement

Physics Letters B (2016), Vol. 756, pp. 52-71

- Perform accurate measurements in events with a tt invariant mass in the TeV range.
- Decay products collimated for boosted top quarks \bigcirc One isolated lepton, $p_T > 25 \text{ GeV}$
- Improved reconstruction at high energy

- ≥1 small-R jet close to lepton
- MET>20 GeV
- \bigcirc MET+M_TW>60 GeV

- one Anti-kT R=1.0, Large-R jet
- Trimmed:rsub=0.3
- $P_T > 300 \text{ GeV}$
- M_{iet} Miet trim>100 GeV

Further requirements:

- $\Delta \varphi$ (lep., large-R jet)>2.3
- \triangle Δ R(lep., small-R jet)<1.5
- \triangle Δ R(small-R, lage-R)>1.5
- \geq 1 b-tagged jet
-) m_{tt}->750GeV

