

Top quark properties at Tevatron

On behalf of the CDF and D0 collaborations

S. Tokár, Comenius Univ., Bratislava Top Workshop 2016, Olomouc, 19-23 Sep 2016

Topics in This Talk

- ➤ About Tevatron and its experiments (CDF, D0)
- > Top pair production cross section
- Forward-Backward/Charge tt production asymmetries
- Polarization of W boson from top decay
- > Top quark spin correlations
- Decay width of top quark
- Top quark charge determination

The Tevatron: CDF and D0

- \bullet collisions: $p \rightarrow \leftarrow \bar{p}$, $\sqrt{s} = 1.96 \text{ TeV}$
- Peak luminosities: 3 4×10³²cm⁻²s⁻¹.
- 10fb-1/ experiment recorded
- Tevatron operation: 1983 2011
- Top quark discovery (1995)

Physics of top quark at Tevatron

Top pair production cross section

Inclusive $t\overline{t}$ production cross section measured combining ℓ +jets and $\ell\ell$ channels;

$$p\overline{p}$$
 collision at $\sqrt{s} = 1.96 \,\mathrm{TeV}$, $\int L dt = 9.7 \,\mathrm{fb}^{-1}$ archiv.1605.06168, sub. to PRD

Different MVA techniques used for ℓ +jets and $\ell\ell$ channels

see event classif., s.24

 ℓ +jets: 6 event groups (ℓ type, n_{jets} =2, 3, \geq 4), for MVA discriminant: \geq 24 variables $\ell\ell$ channel: due to small bkgd var. $j_{\text{b-ID}}^{\text{max}}$ (max. b-ID value) is used to separate signal

Combined likelihood: the product of binned likelihoods for the individual channels - prior probability densities on systematic uncertainties included.

Combined Cross section:

$$\sigma_{t\bar{t}} = 7.26 \pm 0.13 \text{(stat)}^{+0.57}_{-0.50} \text{(syst) pb}, \ \varepsilon = 7.6\%$$

Tevatron σ_{tt} combination

Combination of measurements of $\sigma_{t\bar{t}}$ in the dilepton, ℓ + jets, and all-jets final states, using data collected by the CDF and D0 collaborations, $p\bar{p}$ collision at $\sqrt{s}=1.96 \,\mathrm{TeV}$

Combined Cross section:

$$\sigma_{t\bar{t}} = 7.60 \pm 0.41 \text{ pb}$$

5.4% rel. uncertainty

- ✓ The latest D0 result not included in Tevatron combination.
- ✓ The CDF full statistics result is in preparation!

New combination is expected!

Asymmetries in top quark production

SM: at LO of strong interaction processes: no F-B/Charge asymmetries!

 A_{FB} sources: interference of amplitudes with the same initial and final state particle \Rightarrow appears in

- ✓ higher orders with $q\bar{q}$ and qg initial states;
- ✓ gg fusion is fully symmetric in all orders.

At partonic level: charge asymmetry

$$A_{\rm C}(\cos\theta^*) = \frac{N_{\varrho}(\cos\theta^*) - N_{\bar{\varrho}}(\cos\theta^*)}{N_{\varrho}(\cos\theta^*) + N_{\bar{\varrho}}(\cos\theta^*)}$$

forward-backward asymmetry

$$A_{\text{FB}}\left(\cos\theta^*\right) = \frac{N_{\mathcal{Q}}(\cos\theta^*) - N_{\mathcal{Q}}(-\cos\theta^*)}{N_{\mathcal{Q}}(\cos\theta^*) + N_{\mathcal{Q}}(-\cos\theta^*)}$$

 $\theta^* \equiv Q$ quark production angle wrt proton direction in $q\bar{q}$ rest frame.

Assuming CP conservation: $N_{\bar{Q}}(\cos \theta^*) = N_{\bar{Q}}(-\cos \theta^*) \implies A_{\bar{C}} = A_{FB}$

Integrated FB asymmetry:

Instead of $\theta^* \Rightarrow$ rapidity difference $\Delta y = y_Q - y_{\bar{Q}}$

$$A_{\text{FB}} = \frac{N_{\varrho}(\cos\theta^* > 0) - N_{\varrho}(-\cos\theta^* < 0)}{N_{\varrho}(\cos\theta^* > 0) + N_{\varrho}(-\cos\theta^* < 0)} \longrightarrow A_{\text{FB}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

Contribution of Electroweak processes gives: around 20% effect!

Top asymmetries: Tevatron vs LHC

Distribution of t and \overline{t} in pseudorapidity wrt respect of proton direction \Rightarrow Tevatron vs LHC complement.

SM prediction at NLO (QCD+EW)

Tevatron: $A_{FB} \sim 9\%$ vs LHC: $A_{C} \sim 1\%$

Now available: NNLO+NNLL

PRL 115, 052001 (2015)

Experimentally: Asymmetries based on

- \checkmark fully reconstructed tops ($A_{ER}^{t\bar{t}}$) or
- \checkmark Leptons from top decays $(A_{\rm FR}^{\ell}, A_{\rm FR}^{\ell\ell})$

SM_prediction for $QQ_{A_{FR}}$ (qq rest frame, only QCD): Integrated A_{FR} Differential A_{FB} : maximum at $cos\theta = \pm 1$ PRD 59, 054017(1999)

S. Tokar, Top 2016, Olomouc U

CDF: Top quark asymmetries

CDF studied FB asymmetry in $t\bar{t}$ production using

$$\Delta y = y_t - y_{\overline{t}}$$
; ℓ +jets channel; $\int Ldt = 9.4 \,\mathrm{fb}^{-1}$

Measured asymmetry after correction to parton level:

$$A_{FB}^{t\bar{t}} = (16.4 \pm 4.7)\%$$

$$A_{FB}^{t\bar{t}} = (16.4 \pm 4.7)\%$$
 SM NLO: $A_{FB}^{t\bar{t}} = (8.8 \pm 0.9)\%$

 $A_{\rm FB}^{t\bar{t}}$ linearly depends on $|\Delta y|$ and $M_{t\bar{t}}$

Background: W+jets, Non-W, Single top, ...

Expected bkg: 530 \pm 124, expected signal: 2186 \pm 314

Total SM expected: $2716 \pm 314 \Leftrightarrow$ observed: 2653

CDF: $d\sigma/d\cos\theta^*$ - $t\bar{t}$ x-section vs top production angle wrt proton direction – θ^* in $t\bar{t}$ rest frame; expansion into Legedre series; ℓ+jets channel

- \Rightarrow Measured asymmetry: $A_{FB}^{t\bar{t}} = (19.9 \pm 5.7)\%$
- \Rightarrow A_{FB} as a function of $\cos \theta^* vs$ SM NLO prediction

PRD 87, 092002 (2013)

POWHEG prediction

PRL 111, 182002 (2013)

CDF: Top quark asymmetries

 $A_{\rm FB}$ measured in $\ell\ell$ channel; $\int Ldt = 9.1 \, {\rm fb}^{-1}$, $\Delta y = y_t - y_{\bar{t}}$

PRD 93, 112005 (2016)

Kinematic fitter used to reconstruct $t\bar{t}$ topology

Expect. background: 96±18 Expect. signal: 386±18

(Diboson, $Z/\gamma*+jets$, W+jets)

Total SM expected: 482±36 ⇔ observed: 495

Extracted parton-level asymmetry:

$$A_{FB}^{t\bar{t}} = (12 \pm 11(\text{stat}) \pm 7(\text{syst}))\% = (12 \pm 13)\%$$

SM NNLO: $A_{FB}^{t\bar{t}} = (10.0 \pm 0.6)\%$ PRD 91, 071502 (2015).

0.4

0.2

-0.2

CDF Run II Preliminary

 $A_{\rm FR}$ combination of ℓ +jets and $\ell\ell$ channels; correlations of stat. and syst. uncertainties taken into account (BLUE technique applied):

$$A_{FB}^{t\bar{t}} = (16.0 \pm 4.5)\%$$

The best fit of $A_{\rm FB}^{t\bar{t}} = \alpha \cdot |\Delta y_t|$ yields a slope of $\alpha = 0.14 \pm 0.15$

SM NNLO: $\alpha = 0.114^{+0.006}_{-0.012}$

arXiv:1601.05375.

D0: Top quark asymmetries

D0 measurement of FB asymmetry in ℓ +jets of $t\bar{t}$, $\int Ldt = 9.7 \, \text{fb}^{-1}$

- ✓ Kinematic reconstr. of $t\bar{t} \Rightarrow$ rapidity difference $\Delta y = y_t y_{\bar{t}}$ between t and \bar{t} used
- ✓ Selected events: $\ell + \ge 4$ jets and : $\ell + 3$ jets (partial reconstruction)
- ✓ Background: W+jets, multijet, other bkg
- ✓ Measured background-subtracted A_{FB} 1D-distrib. in Δy and 2D-distrib. in $\left(\Delta y, m_{t\bar{t}}\right)$ unfolded to parton level \Rightarrow

Measured asymmetry:

$$A_{\rm FB}^{t\bar{t}} = (10.6 \pm 3.0)\%$$

PRD 90, 072011 (2014)

 A_{FB} a function of Δy and $t\bar{t}$ invariant mass $m_{t\bar{t}}$

D0: Top quark A_{FR} + polarization

D0 simultaneous measurement of asymmetry A_{FB} and top-quark polarization κP in the beam axis

- \checkmark $A_{\rm FB}$ measured using $\Delta y_{t\bar{t}} = y_t y_{\bar{t}}$
- ✓ Polarization κP using angular distribution of ℓ^+ and ℓ^-

$$\frac{d\sigma}{d\cos\theta^{\pm}} = \frac{1}{2} \left(1 + \kappa^{\pm} P \cos\theta^{\pm} \right)$$

- ✓ Dilepton channel with $\int Ldt = 9.7 \,\text{fb}^{-1}$
- ✓ Measured A_{FB} and κP :

$$A_{\text{FB}}^{t\bar{t}} = (15.0 \pm 6.4(\text{stat}) \pm 4.9(\text{syst}))\%$$

 $\kappa P = (7.2 \pm 10.5(\text{stat}) \pm 4.2(\text{syst}))\%$

correlation: -56%

Assuming NNLO A_{FB} (=9.5±0.7 %): $\kappa P = (11.3\pm9.3)\%$ Assuming SM polarization: $A_{FB}^{t\bar{t}} = (17.5\pm6.3)\%$

Combination of A_{FB} for dilepton and in ℓ +jets channels

(BLUE techniqe):

$$A_{\rm FB}^{t\bar{t}} = (11.8 \pm 2.8)\%$$

Compatibility with the SM prediction!

PRD 92, 052007 (2015)

Summary of A_{FB} measurements (1)

Asymmetry A_{FB} in $t\bar{t}$ production, reconstructed via rapidity difference Δy , measured by CDF and D0 compared with SM NNLO predictions.

Slope α of $A_{FB}^{t\bar{t}} vs \Delta y$ dependence extracted by CDF and D0 compared with SM NNLO predictions

...not bad agreement with SM NNLO

Measured A_{FB} in $t\bar{t}$ production:

compatibility between CDF and D0

CDF: leptonic top quark asymmetries

Idea behind: correlation between top direction and its decay products.

Lepton asymmetry A_{ER}^{ℓ} depends on top pair prod. asymmetry and top polarization

$$\square$$
 A_{FB}^{ℓ} in ℓ +jets channel, 9.4 fb⁻¹:

PRD 88, 072003 (2013)
$$A_{FB}^{\ell} = \frac{N(qy_{\ell} > 0) - N(qy_{\ell} < 0)}{N(qy_{\ell} > 0) + N(qy_{\ell} < 0)}$$

Measured:
$$A_{FB}^{\ell} = 10.5_{-2.9}^{+3.2} \%$$
 NLO SM: $A_{FB}^{\ell} = (3.8 \pm 0.3)\%$

$$A_{\rm FB}^{\ell} = (3.8 \pm 0.3)\%$$

Dilepton ($\ell\ell$ +jets) channel, 9.1 fb⁻¹ \rightarrow the observable:

$$A_{\mathrm{FB}}^{\ell\ell} = \frac{N\left(\Delta\eta > 0\right) - N\left(\Delta\eta < 0\right)}{N\left(\Delta\eta > 0\right) + N\left(\Delta\eta < 0\right)}, \quad \Delta\eta = \eta_{\ell^+} - \eta_{\ell^-} \quad \text{PRD 86, 034026 (2012)}$$

NLO SM prediction:

Measured:
$$A_{FB}^{\ell} = 7.6 \pm 6.0\%$$
 $A_{FB}^{\ell\ell} = (7.2 \pm 6.0)\%$

 $A_{\rm FB}^{\ell\ell} = (4.8 \pm 0.4)\%$

$$A_{\rm FB}^{\ell\ell} = (7.2 \pm 6.0)\%$$

PRL 113, 042001 (2014)*

Combination of ℓ +jets channel and $\ell\ell$ channels,

BLUE technique used:

$$A_{\rm FB}^{\rm lep} = 9.8^{+2.8}_{-2.6} \%$$

D0: leptonic top quark asymmetry

- Dilepton ($\ell\ell$ +jets) channel, 9.7 fb⁻¹
- PRD 88, 112002(2013)
- the observables: $q \times \eta$ and $\Delta \eta = \eta_{\ell^+} \eta_{\ell^-}$
- \checkmark 1 ℓ ($A_{\rm FR}^{\ell}$) and 2 ℓ ($A_{\rm FR}^{\ell\ell}$) asymmetries reconstructed
- ✓ Sensitivity to BSM physics ⇒ comparison with axigluon. BSM models giving a large AFB at tree level-

Asymmetries A_{FR}^{ℓ} and $A_{FR}^{\ell\ell}$ after bkg subtraction and correction for selection eff.

Extracted A_{FR} after unfolding to parton level vs SM prediction

$$A_{\rm FB}^{\ell} = (4.4 \pm 3.7({\rm stat}) \pm 1.1({\rm syst}))\%$$

$$A_{\rm FB}^{\ell\ell} = (10.5 \pm 5.4({\rm stat}) \pm 1.5({\rm syst}))\%$$

 \square Asymmetry in ℓ +jets channel, 9.7 fb⁻¹

$$A_{\rm FB}^{\ell} = (3.8 \pm 0.3)\%$$

$$A_{\rm FB}^{\ell\ell} = (4.8 \pm 0.4)\%$$

PRD 90, 072001(2014)

$$A_{\rm FB}^{\ell} = (4.2 \pm 2.3)\%$$

$$A_{\text{FB}}^{\ell} = \left(4.2 \pm 2.3 \text{(stat)}^{+1.7}_{-2.0} \text{(syst)}\right)\%$$
 ---- Combination for $|y_{\ell}| \le 1.5$:

Tevatron A_{FR} combinations & Summary

Asymmetry A_{FB} in $t\bar{t}$ production, reconstructed via Δy , and leptonic A_{FB} , measured by CDF and D0 were combined (BLUE) and compared with SM NLO and NNLO predictions.

S. Tokar, Top 2016, Olomouc U

1.5

 $\Delta\eta$

0.5

9/20/2016

CDF: polarization of W boson from top

SM: top quark decays before hadronization mainly to Wb via weak interaction (V-A structure) $\Rightarrow tWb$ coupling and W-boson polarization

✓ SM prediction for longitudinal, left- and right-handed polarizations:

$$f_0 = 0.696$$
, $f_- = 0.303$ and $f_+ = 3.8 \times 10^{-4}$

- \checkmark Main background: W+jets, diboson, single top, multijet events
- \checkmark Fractions f_0, f_- and f_+ determined using an unbinned likelihood technique
- \Rightarrow LO matrix element of $q \overline{q} o t \overline{t}$ can be expressed via f_0, f_- and f_+

Model-independent measurement in ℓ +jets channel, 9.1 fb $^{-1}$. simultaneously determined f_0 and f_+ :

$$f_0 = 0.726 \pm 0.066 \text{(stat)} \pm 0.067 \text{(syst)}$$

 $f_+ = -0.045 \pm 0.044 \text{(stat)} \pm 0.058 \text{(syst)}$

correlation f_0 vs f_+ : -0.69

fixing
$$f_{+} = 0$$
 $\Rightarrow f_{0} = 0.683 \pm 0.042 (\text{stat}) \pm 0.040 (\text{syst})$
Fixing $f_{0} = 0.7 \Rightarrow f_{+} = -0.025 \pm 0.024 (\text{stat}) \pm 0.040 (\text{syst})$

D0: top quark polarization

Top polarization measured along 3 quantization axes: beam, helicity and transverse.

- ✓ Measurement in ℓ +jets final state contains a lepton + \geq 3 jets
- \checkmark Measured polarization: using distributions of leptons along the mentioned 3 axes.

Axis	Measured polarization	SM prediction
Beam	$+0.070 \pm 0.055$	-0.002
Beam - $D0$ comb.	$+0.081 \pm 0.048$	-0.002
Helicity	-0.102 ± 0.061	-0.004
Transverse	$+0.040 \pm 0.034$	+0.011

2D visualization of longitudinal top polarizations in ℓ +jets ch. along beam and helicity axes compared with SM and BSM

D0: Top quark spin correlations

Top quark lifetime, $\tau_t \approx 5 \cdot 10^{-25} s$ << spin-decorrelation time, $\tau_{\rm spin} \approx 3 \cdot 10^{-21} s$

 \Rightarrow QCD: unpolarized t and \overline{t} quarks, but the spins of t and \overline{t} are correlated.

Spin correlation observable:

 $\sigma(..) \equiv$ cross section referred to spin state of q and \overline{q} relative to quantization axes

$$O = \frac{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) - \sigma(\uparrow\downarrow) + \sigma(\downarrow\uparrow)}{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) + \sigma(\downarrow\downarrow) + \sigma(\downarrow\downarrow)}$$

✓ Matrix element technique applied to dilepton ($\ell\ell$) and ℓ +jets final state

NEW!

- \checkmark Tevatron vs LHC spin correlations: $q\overline{q}$ annihil. vs like-helicity gg fusion (complement.)
- ✓ Spin correlation discriminant event-by-event:

$$R(x) = \frac{P_{t\bar{t}}(x, SM)}{P_{t\bar{t}}(x, SM) + P_{t\bar{t}}(x, null)}$$
 Probability for SM/null (uncorrelated) hypotesis

✓ Off-diagonal spin basis (max. correlations for $p\overline{p}$)

$$O_{\text{off}} = 0.89 \pm 0.16 \text{(stat)} \pm 0.15 \text{(syst)}$$
 SM: $O_{\text{off}} = 0.80^{+0.01}_{-0.02}$

Significance from zero: 4.2 σ

Assuming absence of non-SM \rightarrow fraction of gg fusion:

$$f_{gg} = 0.08 \pm 0.16 \text{(stat+syst)}$$
 SM (NLO): $f_{gg} = 0.135$

SM (NLO):
$$f_{gg} = 0.135$$

PLB 757, 199 (2016)

CDF: Top quark decay width

SM NNLO: assuming $M_{\rm top}$ =172.5 GeV/c² \Rightarrow Top quark width $\Gamma_{\rm top}$ = 1.32 GeV

- ✓ D0 determined $\Gamma_{\rm top} = 2.00^{+0.47}_{-0.43}$, data set of 5.4 fb⁻¹, using a model-dependent indirect measurement that assumes SM couplings.
- ✓ CDF: more model-independent measurement using a direct shape comparison of the reconstructed M_{top} with data set of 8.7 fb⁻¹
- ✓ Analysis carried out in ℓ+jets channel
- ✓ 5 samples: 0, 1 and 2 b-tags soft and tight tags
- ✓ Main background: W+jets and multijets

Likelihood fit applied to 5 data samples used to extract $\Gamma_{\rm top}$ width:

$$\Gamma_{\rm meas}$$
 = 1.63 GeV, upper limit of $\Gamma_{\rm top}$ < 6.38 GeV 1.10 < $\Gamma_{\rm top}$ < 4.05 GeV 68% C.L.

Confidence bands of $\Gamma_{\rm top}$ as a function of $\Gamma_{\rm meas}$ for 68% and 95% C.L. limits.

Top quark charge determination

SM: $t \rightarrow W^+b$ vs BSM: $t \rightarrow W^-b_{BSM}(-4/3)$

PRD 90, 051101(R)

Fully reconstructed $t\bar{t}$ pairs in ℓ +jets jets channel, 5.3 fb⁻¹

b-jet charge calculated :
$$Q_j = \left(\sum_i Q_i \left(p_{\mathrm{T}i}\right)^{0.5}\right) / \left(\sum_i \left(p_{\mathrm{T}i}\right)^{0.5}\right)$$

Top charge observable → charges of W boson and b-quark

combined:
$$Q_t^\ell = \left|Q_\ell + Q_b^\ell\right|$$
 and $Q_t^h = \left|-Q_\ell + Q_b^h\right|$

Discrimination between SM and BSM \rightarrow likelihood ratio:

$$\Lambda = \left[\prod_{i} P^{\text{SM}} \left(Q_{t}^{i} \right) \right] / \left[\prod_{i} P^{\text{BSM}} \left(Q_{t}^{i} \right) \right]$$

Probability to observe top charge Q_i under SM (BSM) hypothesis

Pseudoexperiments: carried out for **SM** and **XM** hypothesis, all uncertainties included.

fraction of SM tops:
$$f = 0.88 \pm 0.13 \text{(stat)} \pm 0.11 \text{(syst)}$$

✓ An upper limit on the fraction of BSM quarks: 0.46 at a 95% C.L.

CDF: Top quark charge

Data sample: $p\bar{p}$ at $\sqrt{s}=2$ TeV, $L_{int}=5.6$ fb⁻¹

Event selection: $t\bar{t}$ events, l+jets channel

Decision observable: combined charge \Rightarrow $Q_l \times Q_{biet}$

Pairing of ℓ and b-jet: kinematic fitter (max. χ^2)

Candidate events: SM(XM)-like: $Q_l \times Q_{biet} < 0 \ (>0)$

Sensitive variable: $f_+ \equiv$ fraction of SM pairs among all data pairs is used to test SM hypothesis ($f_{+}=1$) vs XM one $(f_{+}=0)$.

Maximal likelihood used to extract SM-fraction \hat{f}_+ for observed SM- and XM- data pairs.

Obtained from data:

- Electron branch (N_{SM} =206, N_{XM} =156): \hat{f}_{+} =1.11
- Muon branch $(N_{SM}=210, N_{XM}=203): \hat{f}_{+} = 0.57$

Combined results: $\hat{f}_{+} = 0.87$

Result of statistical analysis:

- hypothesis of exotic quark is excluded at 99% CL.
- Bayes factor, 2ln(BF) = 19.6: strong prefer. for SM.

Pseudoexperiments: carried out for SM and XM hypothesis, all uncertainties incl.

Summary

- ☐ Tevatron experiments (CDF and D0) provided us with remarkable results on the top quark properties in (good) agreement with SM
- ☐ At Tevatron have been measured not only the basic characteristics of top quarks (cross section or mass), but also
 - ✓ Asymmetries in $t\bar{t}$ production
 - ✓ Top quark spin correlations
 - ✓ Helicity of W bosons from top decay.
 - √ Top quark charge, decay width
- \Box Some results (asymmetries, spin correlations...) are unique due to complementarity connected with $p\overline{p}$ collisions.
- ☐ Results from CDF and D0 are still coming...
- ☐ Heritage of the Tevatron experiments in different experimental techniques is of a great significance for LHC.

Thank you!

D0: ttbar cross section - signal & background

ℓ +jets decay channel							
Process	e+2 jets	e+3 jets	$e+ \ge 4$ jets	$\mu + 2$ jets	$\mu + 3 \text{ jets}$	$\mu + \ge 4$ jets	
Multijet	9160 ± 2350	2266 ± 550	464 ± 120	1546 ± 630	418 ± 170	99 ± 40	
Single top	471 ± 60	129 ± 20	27 ± 5	331 ± 40	92 ± 10	$20 \pm \ 3$	
Wlp + jets	$37937 \pm \frac{1350}{700}$	$5544 \pm {}^{200}_{100}$	$850 \pm \frac{30}{20}$	$32701 \pm {}^{1150}_{600}$	$5313 \pm {}^{200}_{100}$	$835 \pm {}^{30}_{15}$	
$(W c\bar{c} + W b\bar{b})$ +jets	$6020 \pm {}^{1000}_{1400}$	$1502 \pm {250 \atop 350}$	$329 \pm {}^{60}_{80}$	$4998 \pm {850 \atop 1150}$	$1391 \pm {250 \atop 300}$	$315 \pm \frac{50}{70}$	
$Z/\gamma^* lp + \text{jets}$	2031 ± 400	390 ± 80	57 ± 10	2557 ± 500	422 ± 80	49 ± 10	
$(Z/\gamma^* c\bar{c} + Z/\gamma^* b\bar{b})$ +jets	369 ± 70	114 ± 20	24 ± 5	485 ± 100	120 ± 20	21 ± 5	
Diboson	1926 ± 140	338 ± 20	52 ± 5	1417 ± 100	249 ± 20	40 ± 5	
$tar{t},\ell\ell$	566 ± 30	182 ± 10	31 ± 5	345 ± 20	118 ± 10	$22\pm$ 5	
∑ bknd	58479 ± 2900	10465 ± 650	1834 ± 140	44381 ± 1650	8123 ± 350	1402 ± 80	
$t\bar{t}$, ℓ +jets	669 ± 30	1460 ± 70	1177 ± 60	393 ± 20	1002 ± 50	909 ± 50	
$\sum (\text{sig} + \text{bknd})$	59148 ± 2900	11925 ± 650	3011 ± 140	44773 ± 1650	9125 ± 350	2310 ± 80	
Data	59122	11905	3007	44736	9098	2325	

		dilepton decay channel		
Process	$ee + \geq 2$ jets	$\mu\mu+\geq 2 \text{ jets}$	$e\mu + 1$ jets	$e\mu + \geq 2$ jets
Multijet	$5.7\pm {0.9\atop 0.9}$	$7.0 \pm {}^{3.3}_{2.6}$	$28.3 \pm {}^{6.6}_{6.6}$	$32.5 \pm \substack{7.4 \\ 7.4}$
$Z/\gamma^* \to \ell\ell + \text{jets}$	$66.6 \pm {}^{17.9}_{17.2}$	$107.6 \pm {}^{22.1}_{22.0}$	$74.6 \pm {}^{15.8}_{15.8}$	$57.5 \pm {}^{13.8}_{13.4}$
Diboson	$9.9 \pm \frac{2.4}{2.2}$	$12.6 \pm {2.8 \atop 3.0}$	$38.5 \pm \substack{4.6 \\ 4.2}$	$14.7\pm^{3.7}_{3.5}$
∑ bknd	82.2 ± 18	172.2 ± 22	141.4 ± 18	104.7 ± 15
$t\bar{t}$, $\ell\ell$	107.7 ± 15	101.5 ± 12	86.5 ± 11	313.7 ± 38
$\sum (\text{sig} + \text{bknd})$	190 ± 23	229 ± 25	228 ± 21	418 ± 42
Data	215	242	236	465

CDF: Top quark asymmetries

 A_{FB} in $\ell\ell$ channel; $\int Ldt = 9.1 \, {\rm fb}^{-1}$, using Δy Extracted parton-level asymmetry:

$$A_{FB}^{t\bar{t}} = (12 \pm 11(\text{stat}) \pm 7(\text{syst}))\% = (12 \pm 13)\%$$

Expect. background: 96±18 Expect. signal: 386±18

(Diboson, $Z/\gamma*+jets$, W+jets)

Total SM expected: 482±36 ⇔ observed: 495

 A_{FB} combination ℓ +jets and $\ell\ell$ channels; correlations of stat. and syst. uncertainties taken into account (BLUE technique applied): $A_{FB}^{t\bar{t}} = (16.0 \pm 4.5)\%$

CDF Run II Preliminary (9.4 fb^{-1})

The best fit of	
$A_{ ext{ iny FB}}^{tar{t}} = lpha \cdot ig arDelta y_{_t} ig $	

With measurements from both ℓ +jets and $\ell\ell$ final states. All correlations taken into account.

		Bin centroid	$A_{ m FB}^{tar{t}}$	Covariance matrix						
		$ \Delta y $	(Δy)	λ	0.156	0.0296	0.0251	0.00732	0.000682	0.000476
	$ \Delta y < 0.5$	0.24	0.048	0.180	-0.018	0.064	-0.012	-0.371	0.904	-0.201
L+J	$0.5 < \Delta y < 1.0$	0.73	0.180		0.001	-0.030	-0.014	-0.840	-0.235	0.487
Ļ	$1.0 < \Delta y < 1.5$	1.22	0.356	igenvectors	0.008	-0.440	-0.172	-0.344	-0.281	-0.761
	$ \Delta y > 1.5$	1.82	0.477	ligen	0.030	-0.830	-0.286	0.193	0.219	0.378
DIL	$ \Delta y < 0.5$	0.24	0.11		-0.984	-0.087	0.155	0.005	-0.008	0.006
D	$ \Delta y > 0.5$	1.01	0.13		0.174	-0.322	0.930	-0.023	0.024	-0.021

D0: leptonic top quark asymmetry

Dilepton ($\ell\ell$ +jets) channel, 9.7 fb⁻¹ \rightarrow the observables: $q \times \eta$ and $\Delta \eta = \eta_{\ell^+} - \eta_{\ell^-}$ And single lepton (A_{FB}^{ℓ}) and dilepton ($A_{FB}^{\ell\ell}$) asymmetries are reconstructed

✓ Sensitivity to BSM physics ⇒ comparison with axigluon BSM models giving a large AFB at tree level

Systematic uncertainties

	Corre	ected	Extrap	olated
	A_{FB}^{ℓ}	$A^{\ell\ell}$	A_{FB}^{ℓ}	$A^{\ell\ell}$
Source				
Object ID	0.54	0.50	0.59	0.60
Background	0.66	0.74	0.72	0.88
Hadronization	0.52	0.62	0.62	0.92
MC statistics	0.19	0.23	0.23	0.37
Total	1.02	1.12	1.14	1.46

PRD 88, 112002(2013)

Asymmetries A_{FB}^{ℓ} and $A_{FB}^{\ell\ell}$ after bkg subtraction and correction for selection eff.

DØ, L=9.7 fb⁻¹

DataMC@NLO

Extracted A_{FB} after unfolding to parton level vs SM prediction;

$$A_{\rm FB}^{\ell} = (4.4 \pm 3.7({\rm stat}) \pm 1.1({\rm syst}))\%$$

$$A_{\rm FB}^{\ell\ell} = (10.5 \pm 5.4({\rm stat}) \pm 1.5({\rm syst}))\%$$

$$A_{\rm FB}^{\ell} = (3.8 \pm 0.3)\%$$

$$A_{\rm FB}^{\ell\ell} = (4.8 \pm 0.4)\%$$

